Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lure for Diatoms

17.12.2012
Diatom sex pheromone isolated and characterized

Diatoms (unicellular photosynthetic organisms) reproduce through asexual cell division alternating with short periods of sexual reproduction.

A German and Belgian team has now determined that pheromones play an important role in this. As the researchers report in the journal Angewandte Chemie, they were able to isolate and structurally characterize one of these lures.

Diatoms have hard mineral shells that are formed like a hatbox from two overlapping halves. During the asexual reproduction phase, the new cells each get one half of the original shell and make the second half themselves. Because the new part of the shell is made inside the shell of the mother cell, the cell size of a given population constantly decreases. Once a critical cell size is reached, the diatoms must switch to sexual reproduction in order to survive. This produces a cell of the original size.

There are indications that for some species, pheromones are involved as regulators in the differentiation and pairing of the cells. The chemical structure of these signaling molecules was previously unknown. A team from the Universities of Ghent (Belgium) and Jena (Germany) has now researched the role of such messenger molecules in the reproduction of Seminavis robusta.

When S. robusta reaches its species-specific critical cell size, two types of sexual cell are differentiated; these are designated as + and – .

Afterwards, all of the cells of the mobile + mating type gather around an attracting – cell. A team led by Georg Pohnert, Marnik Vuylsteke, and Wim Vyverman has now been able to prove that both mating types produce chemical signals that activate the mating behavior of their partner. To do this, the researchers extracted the culture medium from diatoms in various states and used this extracted material as a source of pheromones.

They demonstrated that chemical messengers must be activated in order to herald the sexual readiness of the two types of cells. The – cells thus release substances that greatly increase the mobility of the + cells; and the + cells release substances that induce the – cells to become prepared to mate and cause them to excrete the actual attracting pheromone. Both mating types rely on signaling molecules to ensure the presence of a mature mating partner before they invest in a sexual response themselves. This increases the chances of successful sexual reproduction.

By comparing the different metabolic products released during the different phases of the reproductive cycle using a method known as “metabolomics”, the researchers found the lure used by the – cells. They isolated it and identified it as diproline. They were able to synthesize this substance by starting from the amino acid proline and determined its absolute configuration.

Research continues in order to determine the extent to which this new pheromone chemistry can be used to promote the growth of algae in aquaculture or to control undesirable algal biofilms.
About the Author
Georg Pohnert is Professor at the Friedrich Schiller University Jena where he leads a group working in the field of bioorganic analytics. His research is focused on the elucidation of signal molecules that play a role in the communication of marine organisms, with a particular emphasis on the chemical language of algae.
Author: Georg Pohnert, Friedrich-Schiller-Universität Jena (Germany), http://www.uni-jena.de/Contact_page_158398.html
Title: Metabolomics Enabeled Structure Elucidation of a Diatom Sex Pheromone
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201208175

Georg Pohnert | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uni-jena.de/Contact_page_158398.html

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>