Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lure for Diatoms

17.12.2012
Diatom sex pheromone isolated and characterized

Diatoms (unicellular photosynthetic organisms) reproduce through asexual cell division alternating with short periods of sexual reproduction.

A German and Belgian team has now determined that pheromones play an important role in this. As the researchers report in the journal Angewandte Chemie, they were able to isolate and structurally characterize one of these lures.

Diatoms have hard mineral shells that are formed like a hatbox from two overlapping halves. During the asexual reproduction phase, the new cells each get one half of the original shell and make the second half themselves. Because the new part of the shell is made inside the shell of the mother cell, the cell size of a given population constantly decreases. Once a critical cell size is reached, the diatoms must switch to sexual reproduction in order to survive. This produces a cell of the original size.

There are indications that for some species, pheromones are involved as regulators in the differentiation and pairing of the cells. The chemical structure of these signaling molecules was previously unknown. A team from the Universities of Ghent (Belgium) and Jena (Germany) has now researched the role of such messenger molecules in the reproduction of Seminavis robusta.

When S. robusta reaches its species-specific critical cell size, two types of sexual cell are differentiated; these are designated as + and – .

Afterwards, all of the cells of the mobile + mating type gather around an attracting – cell. A team led by Georg Pohnert, Marnik Vuylsteke, and Wim Vyverman has now been able to prove that both mating types produce chemical signals that activate the mating behavior of their partner. To do this, the researchers extracted the culture medium from diatoms in various states and used this extracted material as a source of pheromones.

They demonstrated that chemical messengers must be activated in order to herald the sexual readiness of the two types of cells. The – cells thus release substances that greatly increase the mobility of the + cells; and the + cells release substances that induce the – cells to become prepared to mate and cause them to excrete the actual attracting pheromone. Both mating types rely on signaling molecules to ensure the presence of a mature mating partner before they invest in a sexual response themselves. This increases the chances of successful sexual reproduction.

By comparing the different metabolic products released during the different phases of the reproductive cycle using a method known as “metabolomics”, the researchers found the lure used by the – cells. They isolated it and identified it as diproline. They were able to synthesize this substance by starting from the amino acid proline and determined its absolute configuration.

Research continues in order to determine the extent to which this new pheromone chemistry can be used to promote the growth of algae in aquaculture or to control undesirable algal biofilms.
About the Author
Georg Pohnert is Professor at the Friedrich Schiller University Jena where he leads a group working in the field of bioorganic analytics. His research is focused on the elucidation of signal molecules that play a role in the communication of marine organisms, with a particular emphasis on the chemical language of algae.
Author: Georg Pohnert, Friedrich-Schiller-Universität Jena (Germany), http://www.uni-jena.de/Contact_page_158398.html
Title: Metabolomics Enabeled Structure Elucidation of a Diatom Sex Pheromone
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201208175

Georg Pohnert | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uni-jena.de/Contact_page_158398.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>