Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer suppresses miR-200 to invade and spread

16.09.2009
Findings present possible avenue for preventing metastasis

Primary lung cancer shifts to metastatic disease by suppressing a family of small molecules that normally locks the tumor in a noninvasive state, researchers at The University of Texas M. D. Anderson Cancer Center report in the Sept. 15 edition of Genes and Development.

"Existing treatments have little success against cancer that has spread to other organs, so finding a way to prevent metastasis could have a huge impact on survival," said senior author Jonathan Kurie, M.D., professor in M. D. Anderson's Department of Thoracic/Head and Neck Medical Oncology.

"To do that, we need to understand the cues that initiate metastasis. In this paper we show that microRNA-200 is one of those central cues," Kurie said. MicroRNAs are single-stranded bits of RNA that regulate messenger RNA expressed by genes to order the creation of a specific protein.

All primary tumors in a strain of mice prone to metastatic lung cancer became invasive and spread when miR-200 was suppressed. Protecting miR-200 from blockade completely prevented metastasis in another group of the mice, the researchers found.

Tumors shift between noninvasive and invasive state

The team found that miR-200 needs to be shut down for the primary tumor to change from stationary epithelial cells to mobile mesenchymal cells. This epithelial-to-mesenchymal transition (EMT) is recognized as a crucial step in metastasis, which causes 90 percent of all cancer deaths.

An estimated 80 percent of all solid tumors originate in the epithelial cells, which line an organ or its cavities and are generally immobile. Mesenchymal cells are mobile and can differentiate into many different cell types.

When the team profiled a panel of 40 human lung cancer cell lines that had been characterized on the basis of EMT features (epithelial versus mesenchmyal) and site of origin (primary lung tumor versus metastasis), miR-200 expression was highest in those cells with epithelial features and was the best of more than 700 microRNAs tested as an indicator of metastatic or primary origin.

"Highly metastatic lung cancer cells had completely shutdown miR-200 expression, that's what triggered EMT in those cells," Kurie said. "When we went back and forced overexpression of miR-200, the cells remained locked in the epithelial state and could no longer metastasize."

The team also found that the cancer cells could shift from epithelial to mesenchymal and back depending on the cell's context. The same cells that remain epithelial in Matrigel become "blatantly mesenchymal" when moved to the mouse model and assume an intermediate state when growing in plastic dishes.

Matrigel is a gelatinous mixture that is designed to simulate the complex environment that cells occupy called the extracellular matrix.

"If you take the tumors out of the mice and back to the matrigel, they revert to epithelial cells," Kurie said. "These cells are highly plastic and responsive to the extracellular environment.

"The idea that these highly plastic cells are the source of metastasis indicates that metastatic capacity is a regulatable tumor cell function. That's new," Kurie said. "Identifying the signals that govern plasticity could lead to a novel way of targeting and preventing metastasis."

Kurie and colleagues continue to work on identifying upstream regulators of miR-200 that might provide targets for therapy.

The researchers started with a strain of mice that develops metastatic lung cancer based on mutations in the Kras oncogene and the tumor-suppressing p53 gene. Cell lines isolated from these mice were introduced in wild type mice and the resultant tumors characterized for metastatic potential.

All tumor cell lines were profiled for gene expression. "The thing that popped out strongly was an EMT signal present in the metastatic cells but not in the non-metastatic cells," Kurie said.

The team then profiled the tumors for microRNA expression. Out of thousands of miRNAs, only the miR-200 family of five miRNAs, along with three others, emerged as differentially expressed. The other three are being studied.

Co-authors with Kurie were first author Don Gibbons, M.D., Ph.D., Wei Lin, M.D., Zain Rizvi, and Nishan Thilaganathan, all of the Department of Thoracic/Head and Neck Medical Oncology; Chad Creighton, Ph.D., and Yiqun Zhang of the Dan L. Duncan Cancer Center at Baylor College of Medicine; Philip Gregory, Ph.D., and Gregory Goodall, Ph.D., of the Centre for Cancer Biology, Hanson Institute in Adelaide, Australia; and Alexander Pertsemlidis, Ph.D., and Liqin Du, Ph.D., of the Eugene McDermott Center for Human Growth and Development at The University of Texas Southwestern Medical Center in Dallas.

The research was funded by grants from the National Cancer Institute, including the Lung Cancer Specialized Program of Research Excellence; the David M. Sather Memorial Fund, the Armour Family Lung Cancer Research Fund and the Dan L. Duncan Cancer Center at Baylor College of Medicine. Gibbons also was supported by a Young Investigator Award from The ASCO Cancer Foundation and an International Association for the Study of Lung Cancer (IASLC) Fellow Grant.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>