Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung Cancer Researchers Identify Gene Set That Shows Which Patients Benefit from Chemotherapy After Surgery

09.09.2010
Lung cancer researchers have identified a genetic signature that can help doctors determine which patients with early-stage non-small cell lung cancer are at high risk for developing disease recurrence and therefore may benefit from chemotherapy after surgery (“adjuvant chemotherapy”).

“The findings give patients and their doctors a clearer map of the appropriate post-operative treatment route to follow. Not all patients benefit from chemotherapy after surgery and those with less aggressive cancer may be spared from the potentially debilitating side effects of this treatment,” says principal investigator Dr. Ming Tsao, pathologist at the Princess Margaret Hospital (PMH) Cancer Program, University Health Network (UHN), and Professor of Laboratory Medicine and Pathobiology at the University of Toronto. He also holds the M. Qasim Choksi Chair in Lung Cancer Translational Research at UHN.

“Our study was rigorously validated by multiple testing across data from different patient populations and so we believe these findings can be applied generally to other patients with early-stage non-small cell lung cancer,” says Dr. Tsao.

“The ability to tell whether a particular patient is a good candidate for adjuvant chemotherapy will bring us closer to our goals of improving patient care through personalized medicine,” adds study collaborator Dr. Frances Shepherd, PMH medical oncologist and holder of the Scott Taylor Chair in Lung Cancer Research at UHN.

The study, published online today in the Journal of Clinical Oncology (JCO 64325), advances the 2005 findings of the NCIC Clinical Trials Group study JBR.10, conducted in collaboration with the U.S. National Cancer Institute. The JBR.10 findings showed significant survival benefit from the anti-cancer drugs vinorelbine and cisplatin in patients with early-stage (stage I and II) non-small cell lung cancer whose tumors had been surgically removed. Dr. Tsao’s research team and collaborators at NCIC Clinical Trials Group at Queen’s University performed a genetic analysis of tumor tissue from 133 of the 482 patients from the JBR.10 study who had banked frozen tumor samples.

The Tsao team identified a set of 15 genes that, in 62 patients who did not receive chemotherapy after surgery, predicted which patients had aggressive cancers with high risk of recurrence and death (31 patients), and which had less aggressive disease and low risk of recurrence (31 patients).

They then applied the signature to 71 patients who were randomized to receive chemotherapy in the JBR.10 trial. Patients predicted to have aggressive disease

experienced the greatest benefit from chemotherapy — with a 67 percent reduction in the risk of death — while chemotherapy did not reduce the risk of death in patients designated as low risk.

While a previous JBR.10 analysis showed that overall only patients with stage II disease benefited from chemotherapy after surgery, Dr. Tsao’s study demonstrates that the 15 gene signature may identify patients with both stage I and II cancers who may benefit from post-operative chemotherapy.

The research was supported by the Canadian Cancer Society and the National Cancer Institute in the United States. Drs. Tsao and Shepherd, clinician-scientists at the hospital’s research arm, the Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, are also supported by the PMH Foundation and the Ontario Ministry of Health and Long-term Care.

Princess Margaret Hospital and its research arm Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are research hospitals affiliated with the University of Toronto. For more information, go to www.uhn.ca

The NCIC Clinical Trials Group (NCIC CTG) is a cancer clinical trials cooperative group that conducts phase I-III trials testing anti-cancer and supportive therapies across Canada and internationally. It is one of the national programmes and networks of the Canadian Cancer Society Research Institute (CCSRI), and is supported by the CCSRI with funds raised by the Canadian Cancer Society (CCS). The NCIC CTG’s Central Office is located at Queen’s University in Kingston, Ontario, Canada.

Jane Finlayson | Newswise Science News
Further information:
http://www.uhn.on.ca

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>