Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer: Molecular scissors determine therapy effectiveness

19.03.2009
In the past few years, a number of anti-cancer drugs have been developed which are directed selectively against specific key molecules of tumor cells.

Among these is an antibody called cetuximab, which attaches to a protein molecule that is found in large amounts on the surface of many types of cancer cells. When this surface molecule, called epidermal growth factor receptor, or EGF-R for short, is blocked by cetuximab, the cancer cell receives less signals stimulating cell division.

Clinical studies of non-small cell lung cancer, which is the most frequent type of lung cancer, have shown so far that only part of the patients treated with cetuximab benefit from the treatment. Therefore, doctors are urgently searching for biomarkers which reliably predict responsiveness to the antibody therapy.

Professor Heike Allgayer heads the Department of Experimental Surgery of the Mannheim Medical Faculty of the University of Heidelberg and the Clinical Cooperation Unit "Molecular Oncology of Solid Tumors" at DKFZ. The scientist suspects that the therapeutic antibody can disarm, in particular, individual cancer cells that have detached from the primary tumor, invade other tissues and grow into secondary tumors there. Therefore, Allgayer and her team focused on lung cancer cells' ability to metastasize. Indeed, the investigators were the first to show in lung cancer cell lines that cetuximab inhibits growth and invasion of cancer cells and reduces the frequency of metastasis.

For invading surrounding healthy tissue, cancer cells needs specific proteins which act like molecular scissors to cut a trail for them. One of these cutting tools is the u-PAR protein which is considered a marker molecule for the invasion ability of cancer cells. Allgayer's team found out that cancer cells produce less u-PAR after treatment with cetuximab: The antibody appears to block the cell's u-PAR production.

Allgayer's team also showed that non-small cell lung cancer is resistant to cetuximab treatment, in particular, when the cancer cells produce large amounts of u-PAR. When the researchers switched off u-PAR production using a genetic trick, the cells responded to cetuximab again.

"Our results show, for the first time, that u-PAR might be an indicator of the effectiveness of cetuximab treatment in non-small cell lung cancer," Heike Allgayer says. "The more u-PAR the cells produce, the less they are responsive to the drug." This conclusion is in line with first observations made in lung cancer patients. Tumor cells of patients who did not respond to cetuximab usually produced higher amounts of the molecular scissors u-PAR.

It came as a surprise for Allgayer that EGF-R itself, the target molecule of the drug cetuximab, did not correlate with responsiveness. Further investigations are needed to verify these results. "We want to find possibilities to prescribe the drug only for those patients who can actually benefit from it," says Allgayer, a doctor and scientist. "Finding suitable biomarkers is one of the most urgent tasks when introducing novel, target-specific therapeutics."

Nikolova DA, Asangani IA, Nelson LD, Hughes DPM, Siwak DR, Mills GB, Harms A, Buchholz E, Pilz LR, Manegold C, Allgayer H: Cetuximab attenuates metastasis and u-PAR expression in non-small cell lung cancer: u-PAR and E-cadherin are novel biomarkers of Cetuximab sensitivity. Cancer Research 2009, DOI: 10.1158/0008-5472.CAN-08-3236

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstaedt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>