Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lung cancer gene found

20.07.2011
Cancer biologists identify a driving force behind the spread of an aggressive type of lung cancer.

A major challenge for cancer biologists is figuring out which among the hundreds of genetic mutations found in a cancer cell are most important for driving the cancer’s spread.

Using a new technique called whole-genome profiling, MIT scientists have now pinpointed a gene that appears to drive progression of small cell lung cancer, an aggressive form of lung cancer accounting for about 15 percent of lung cancer cases.

The gene, which the researchers found overexpressed in both mouse and human lung tumors, could lead to new drug targets, says Alison Dooley, a recent PhD recipient in the lab of Tyler Jacks, director of MIT’s David H. Koch Institute for Integrative Cancer Research. Dooley is the lead author of a paper describing the finding in the July 15 issue of Genes and Development.

Small cell lung cancer kills about 95 percent of patients within five years of diagnosis; scientists do not yet have a good understanding of which genes control it. Dooley and her colleagues studied the disease’s progression using a strain of mice, developed in the laboratory of Anton Berns at the Netherlands Cancer Institute, that deletes two key tumor-suppressor genes, p53 and Rb.

“The mouse model recapitulates what is seen in human disease. It develops very aggressive lung tumors, which metastasize to sites where metastases are often seen in humans,” such as the liver and adrenal glands, Dooley says.

This kind of model allows scientists to follow the disease progression from beginning to end, which can’t normally be done with humans because the fast-spreading disease is often diagnosed very late. Using whole-genome profiling, the researchers were able to identify sections of chromosomes that had been duplicated or deleted in mice with cancer.

They found extra copies of a few short stretches of DNA, including a segment of chromosome 4 that turned out to include a single gene called Nuclear Factor I/B (NFIB). This is the first time NFIB has been implicated in small cell lung cancer, though it has been seen in a mouse study of prostate cancer. The gene’s exact function is not known, but it is involved in the development of lung cells.

Researchers in Jacks’ lab collaborated with scientists in Matthew Meyerson’s lab at the Dana-Farber Cancer Institute and the Broad Institute to analyze human cancer cells, and found that NFIB is also amplified in human small cell lung tumors.

That makes a convincing case that the gene truly is playing an important role in human small cell lung cancer, says Barry Nelkin, a professor of oncology at Johns Hopkins University School of Medicine, who was not involved in this research.

“The question, always, with mouse models is whether they can tell you anything about a human disease,” Nelkin says. “Some tell you something, but in others, there may be only a similarity in behavior, and the genetic changes are nothing like what is seen in humans.”

The NFIB gene codes for a transcription factor, meaning it controls the expression of other genes, so researchers in Jacks’ lab are now looking for the genes controlled by NFIB. “If we find what genes NFIB is regulating, that could provide new targets for small cell lung cancer therapy,” Dooley says.

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>