Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC researchers develop new system to better study behavior, cell function

06.09.2013
A team of researchers led by Charles D. Nichols, PhD, Associate Professor of Pharmacology at LSU Health Sciences Center New Orleans, has successfully translated a new technology to better study behaviors and cellular function to fruit flies.

This powerful genetic tool – Designer Receptors Exclusively Activated by Designer Drugs – allows scientists to selectively, rapidly, reversibly, and dose-dependently remotely control behaviors and physiological processes in the fly.

The fruit fly shares a significant degree of similarity to humans and can be used to model a number of human diseases including Alzheimer's, Parkinson's, cancer, obesity, diabetes, heart disease, epilepsy, ALS, mental illness, and more. The research, published on September 5, 2013, is available online in the journal, Cell Reports.

"Significant advantages the fly offers as a model are the advanced genetic tools available for manipulating gene expression, like the ability to selectively express genes in any defined cell or tissue, in combination with its prolific and rapid reproduction cycle and ease of growth," notes Charles D. Nichols, PhD, Associate Professor of Pharmacology at LSU Health Sciences Center New Orleans.

In order to study behaviors, a common method is to manipulate the activity state of neurons and observe the effects. By and large, current methods are essentially switches to turn the neuron on or off and can produce dramatic changes in neuronal activity that can manifest in significant behavioral changes. One disadvantage with these switch-like approaches is that they can mask more subtle functions of neuronal circuits in regulating behaviors.

Another is that many require expensive specialized equipment like light sources and fiber optics to manipulate neuron function. Designer Receptors Exclusively Activated by Designer Drugs, or DREADD, technology was first developed by one of the co-authors (B.L. Roth) for mammalian systems and overcomes many of the limitations of switch-based approaches.

Using genetic technology, the research team developed DREADD receptors in the flies' neuronal circuits, which they selectively activated by feeding the flies a drug that only activates the DREADD receptors in their food. There were three DREADD flavors – two activating and one inhibitory. Depending on which DREADD was expressed where, distinct neural circuits could either be activated or suppressed. Because the researchers activated DREADDs with drugs in the food, the degree of activation could be precisely controlled by just changing the amount of drug in the food.

"We have successfully translated this technology to the fly and in this paper report reversible and dose responsive control of many behaviors including sensory perception, learning and memory, and courtship," says Dr. Nichols. "Our new pharmacogenetic approach fills an important and unmet need in our ability to understand fly behaviors by allowing us for the first time to conveniently examine behaviors in only partially activated neurons to uncover more subtle roles for particular neurons and circuits in behaviors." A better understanding of fly behaviors will translate to a better understanding of human biology and diseases.

A unique feature of this DREADD system not found in other methods is that it is not limited to the control of neurons – activity levels of certain enzymes in almost every tissue type can be controlled to probe mechanisms of basic cellular function. The researchers demonstrated this ability by stopping the fly heart with activation of the inhibiting DREADD expressed in the heart, and then restarting the heart simply by washing away the drug.

In addition to Dr. Nichols, the research team also included Dr. Edmund Kerut, Medical Director of the Echocardiography Program in the LSUHSC School of Allied Health Professions, LSUHSC Pharmacology & Experimental Therapeutics postdoctoral fellows and research associates Jaime Becnel, Oralee Johnson, Vi Tran, and Bangning Yu, as well as researchers from the University of Kentucky and the University of North Carolina Medical School.

The research was supported by a grant from the National Institutes of Health.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>