Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research finds protein that protects cancer cells from chemo and radiation therapy

25.03.2011
Research led by Daitoku Sakamuro, PhD, Assistant Professor of Pathology at LSU Health Sciences Center New Orleans and the LSUHSC Stanley S. Scott Cancer Center, has identified a protein that enables the activation of a DNA-repair enzyme that protects cancer cells from catastrophic damage caused by chemo and radiation therapy.

This protein, called c-MYC oncoprotein, can initiate and promote almost all human cancers and discovering the role it plays in cancer treatment resistance may lead to advances that save lives.

The work is published in the March 29, 2011 issue of Science Signaling, a publication of the American Association for the Advancement of Science. Although scientists have known that cancer cells can acquire resistance to DNA-damaging therapeutic agents, the genetic mechanisms through which this occurs have remained unclear until now.

Using the chemotherapy drug, cisplatin (which is commonly used as a first-line therapy for various cancers) to design a set of experiments, the research team found that the c-MYC oncoprotein increases cisplatin resistance by decreasing production of a c-MYC inhibitor called BIN1. BIN1 suppressed an enzyme essential for DNA repair, and the sensitivity of cancer cells to cisplatin depended upon BIN1 abundance. Overproducing the c-MYC oncoprotein repressed BIN1, blocking its life-saving action.

"Our study provides a potent and novel mechanism through which cancer acquires resistance to DNA damage," notes Dr. Sakamuro. "Inhibition of oncogenic c-MYC may provide an attractive strategy for cancer therapy in combination with DNA-damaging agents."

The researchers also propose that analyzing the levels of the c-MYC and BIN1 proteins or their mutational status may also serve as a valuable prognostic marker to determine whether a cancer will respond to an aggressive dose of therapeutic agents.

According to the American Cancer Society, about 1,529,560 new cancer cases were expected to be diagnosed in the United States in 2010, excluding noninvasive cancers as well as basal and squamous cell skin cancers. Cancer accounts for nearly one quarter of the deaths in the US with an estimated 569,490 cancer deaths expected last year.

"Our study will determine how we can re-sensitize malignant cancer cells to conventional DNA-damaging therapeutic agents and how we can minimize unnecessary side effects associated with cytotoxic chemo and radiation therapy," adds Dr. Sakamuro.

In addition to LSU Health Sciences Center New Orleans, the research team included scientists from Purdue University, West Lafayette, Indiana.

The research was supported by grants from the US Army Department of Defense, National Institutes of Health, Louisiana Cancer Research Consortium, Susan G. Komen Foundation, Walther Cancer Foundation, and Wendy Will Case Cancer Fund.

Dr. Sakamuro notes that 90% of this research was done at LSU Health Sciences Center New Orleans after Katrina. "When I attend conferences out of town, some people think New Orleans is still under water or struggling to recover. But the fact is the LSUHSC biomedical research facilities are fully recovered and a top notch environment for scientific discovery and success."

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>