Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research finds protein that protects cancer cells from chemo and radiation therapy

25.03.2011
Research led by Daitoku Sakamuro, PhD, Assistant Professor of Pathology at LSU Health Sciences Center New Orleans and the LSUHSC Stanley S. Scott Cancer Center, has identified a protein that enables the activation of a DNA-repair enzyme that protects cancer cells from catastrophic damage caused by chemo and radiation therapy.

This protein, called c-MYC oncoprotein, can initiate and promote almost all human cancers and discovering the role it plays in cancer treatment resistance may lead to advances that save lives.

The work is published in the March 29, 2011 issue of Science Signaling, a publication of the American Association for the Advancement of Science. Although scientists have known that cancer cells can acquire resistance to DNA-damaging therapeutic agents, the genetic mechanisms through which this occurs have remained unclear until now.

Using the chemotherapy drug, cisplatin (which is commonly used as a first-line therapy for various cancers) to design a set of experiments, the research team found that the c-MYC oncoprotein increases cisplatin resistance by decreasing production of a c-MYC inhibitor called BIN1. BIN1 suppressed an enzyme essential for DNA repair, and the sensitivity of cancer cells to cisplatin depended upon BIN1 abundance. Overproducing the c-MYC oncoprotein repressed BIN1, blocking its life-saving action.

"Our study provides a potent and novel mechanism through which cancer acquires resistance to DNA damage," notes Dr. Sakamuro. "Inhibition of oncogenic c-MYC may provide an attractive strategy for cancer therapy in combination with DNA-damaging agents."

The researchers also propose that analyzing the levels of the c-MYC and BIN1 proteins or their mutational status may also serve as a valuable prognostic marker to determine whether a cancer will respond to an aggressive dose of therapeutic agents.

According to the American Cancer Society, about 1,529,560 new cancer cases were expected to be diagnosed in the United States in 2010, excluding noninvasive cancers as well as basal and squamous cell skin cancers. Cancer accounts for nearly one quarter of the deaths in the US with an estimated 569,490 cancer deaths expected last year.

"Our study will determine how we can re-sensitize malignant cancer cells to conventional DNA-damaging therapeutic agents and how we can minimize unnecessary side effects associated with cytotoxic chemo and radiation therapy," adds Dr. Sakamuro.

In addition to LSU Health Sciences Center New Orleans, the research team included scientists from Purdue University, West Lafayette, Indiana.

The research was supported by grants from the US Army Department of Defense, National Institutes of Health, Louisiana Cancer Research Consortium, Susan G. Komen Foundation, Walther Cancer Foundation, and Wendy Will Case Cancer Fund.

Dr. Sakamuro notes that 90% of this research was done at LSU Health Sciences Center New Orleans after Katrina. "When I attend conferences out of town, some people think New Orleans is still under water or struggling to recover. But the fact is the LSUHSC biomedical research facilities are fully recovered and a top notch environment for scientific discovery and success."

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>