Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research discovers new targets for treatment of invasive breast cancer

21.08.2009
Research led by Suresh Alahari, PhD, Associate Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans, has shown for the first time that a tiny piece of RNA appears to play a major role in the development of invasive breast cancer and identified a gene that appears to inhibit invasive breast cancer. The research is published in the August 21, 2009 issue of the Journal of Biological Chemistry.

The LSUHSC researchers are the first to demonstrate that miR-27b, a novel microRNA, not only inactivates the ST14 gene which they found suppresses the growth of breast tumor cells, but also that miR-27b stimulates the breast cancer to invade other cells.

MicroRNAs are a new class of small, single-stranded RNA molecules which play an important regulatory role in cell biology. They bind to target genes and decrease their function. MicroRNAs may act as oncogenes (a gene that contributes to cancer development) or tumor suppressors.

In this study working with a line of human breast cancer cells, Dr. Alahari's team found that aggressively invasive breast tumor cells contain a large quantity of miR-27b molecules, while normal cells do not. Further analysis revealed that miR-27b increases during cancer progression, in direct proportion to the decrease in function of the ST14 gene. They found that miR-27b promotes cell growth and cell invasion, suggesting that miR-27b acts as a breast cancer oncogene. They also found that ST14 inhibits both cell growth and cell invasion, suggesting that ST14 is a breast cancer tumor suppressor gene and that it may also serve as a marker for the early detection of breast cancer.

According to the American Cancer Society, an estimated 192,370 new cases of invasive breast cancer are expected to occur among women in the US during 2009; about 1,910 new cases are expected in men. Excluding cancers of the skin, breast cancer is the most frequently diagnosed cancer in women. An estimated 40,610 breast cancer deaths (40,170 women, 440 men) are expected in 2009. Breast cancer ranks second as a cause of cancer death in women (after lung cancer).

"We are in the process of confirming these results and these studies will reveal whether ST14 can reduce breast tumor growth in animals," notes Dr. Alahari, who is also a member of the LSUHSC Stanley S. Scott Cancer Center. "Blocking the miR-27b/ST14 interaction or rescuing ST14 function may be an effective therapeutic approach to advance breast cancer treatment."

This study was supported by funding from the National Institutes of Health, the Susan G. Komen Breast Cancer Foundation, the Louisiana Board of Regents, and the Louisiana Cancer Research Consortium.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC comprises a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, and Schools of Allied Health Professions, Nursing, and Graduate Studies. LSUHSC faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSUHSC research enterprise generates jobs and enormous economic impact, LSUHSC faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>