Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New low-temperature chemical reaction explained

05.09.2013
Unusual reaction, never fully understood, is important to fuel combustion, atmospheric chemistry and biochemistry

In all the centuries that humans have studied chemical reactions, just 36 basic types of reactions have been found. Now, thanks to the work of researchers at MIT and the University of Minnesota, a 37th type of reaction can be added to the list.

The newly explained reaction — whose basic outlines had been known for three decades, but whose workings had never been understood in detail — is an important part of atmospheric reactions that lead to the formation of climate-affecting aerosols; biochemical reactions that may be important for human physiology; and combustion reactions in engines.

The new analysis is explained in a paper by MIT graduate student Amrit Jalan, chemical engineering professor William Green, and six other researchers, published in the Journal of the American Chemical Society.

The reaction's details sound esoteric: a low-temperature oxidation that results in the decomposition of complex organic molecules known as gamma-ketohydroperoxides. When he first described the reaction in the scientific literature 30 years ago, Stefan Korcek of the Ford Motor Company proposed a hypothesis for how the reaction might take place. The new work shows that Korcek had the right concept, although some details differ from his predictions.

The original discovery was the result of analyzing how engine oils break down through oxidation — part of an attempt to produce oils that would last longer. That's important, Green points out, since waste oil is among the largest hazardous waste streams in the United States.

In analyzing the problem, Korcek realized that "there were fundamental things about the way even simple hydrocarbons react with oxygen that we didn't understand," Green says. By examining the products of the reaction, which included carboxylic acids and ketones, Korcek outlined an unusually complex multipart reaction. But for the next three decades, nobody found a way to verify whether the reaction or the steps he outlined could work.

Jalan says that the MIT researchers' analysis came about almost by accident. "I was looking at that paper for a different study," he says, "and I came across [Korcek's] work, which hadn't been verified either theoretically or experimentally. … [We] decided to see if we could explain his observations by throwing quantum mechanical tools at the problem."

In collaboration with the Minnesota researchers — including Donald Truhlar, a co-author of the new paper and a leading expert in such calculations — Jalan and Green were able to demonstrate exactly why the reaction works as it does. But they also found that part of the process must differ slightly from Korcek's original hypothesis.

Green says that understanding how this "very important reaction" works could be significant in several fields. The researchers' initial impetus was, in part, a colleague's exploration of biofuel combustion. The new understanding of the degradation that can take place as different fuels oxidize — sometimes producing toxic or corrosive byproducts — could help narrow the choice of fuel types to pursue, he says.

The process is also related to oxidations that take place in the body, contributing to the tissue damage and aging that antioxidant vitamins seek to combat, Green says.

Green points out that because this is an entirely new type of reaction, it opens the door to research on other variations. "Once you discover a new type of reaction, there must be many similar ones," he says.

"It's very odd to have so many reactions at once in such a small molecule," Green adds. "Now that we know that can happen, we're searching for other cases."

The research was supported in part by the U.S. Department of Energy, and used computing facilities at the Pacific Northwest National Laboratory and the Minnesota Supercomputing Institute.

Written by David Chandler, MIT News Office

Andrew Carleen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>