Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cal diet's effects seen in fly brain, mouthpart

17.07.2012
Transmission of nerve signals is enhanced in the insects that eat less

A novel technique for measuring tiny, rapid-fire secretions in the brains and mouthparts of fruit flies (drosophila) is providing insights into the beneficial effects of eating less — information that ultimately could help people suffering from neuromuscular disorders.

Using the method, researchers uncovered never-before-seen brain chemistry that helps explain why fruit flies genetically manipulated to mimic conditions such as Parkinson's disease and myasthenia gravis are more vigorous and live longer when fed a restricted diet.

Published in June by Aging Cell, the research was conducted by a team from the School of Medicine and the Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center San Antonio.

Why eating less may be therapeutic

Senior author Benjamin Eaton, Ph.D., assistant professor of physiology, says the results demonstrate how limiting calories may be therapeutic for people with various syndromes.

Lead author Joel Rawson, Ph.D., and the Eaton team developed a novel system to analyze the impact of diet on life span and motor behavior as well as on neurotransmission, which is believed to underlie most neurological disorders in humans.

Flies on the low-calorie diet showed a 100 percent increase in the release of brain chemicals, which are called neurotransmitters, from their neurons. These chemicals carry signals from one nerve cell to another across gaps called synapses. The brain has millions of synapses that are believed to be the critical structures required for normal brain function. Diseases such as Parkinson's harm them irreparably.

Firing up the muscle activity

Furthermore the chemicals were secreted at critical locations. "Diet restriction increased the neurotransmitters released at synapses called neuromuscular junctions," Dr. Eaton said. "These synapses, which form on muscle, transmit nerve impulses from the brain to muscles, resulting in movement. If neuromuscular junctions degenerate, resulting in the release of less neurotransmitter, then muscle activity diminishes. This is observed in diseases such as myasthenia gravis and amyotrophic lateral sclerosis (ALS)."

The observation that diet could directly affect the amount of neurotransmitter secreted by the neuron was a novel observation that had not been seen previously.

"People have seen that diet has effects on the nervous system, but the nuts and bolts of what it is doing to neurons have not been established," Dr. Eaton said. ""We believe we have shown a novel and important effect."

Probing the fly proboscis

The team genetically engineered a single pair of motor neurons to develop neurodegenerative disease, resulting in a decrease of the flies' ability to extend the proboscis, which they use to gather food. The team then dissected the head to locate the appropriate muscles on the proboscis and quantified the neurotransmitter activity occurring there, which continues to take place even after death.

"We went into the very muscles that that these motor neurons controlled and analyzed neurotransmission using electrodes," Dr. Eaton said. "We showed diet can rescue proboscis extension by increasing the amount of neurotransmitter released. This suggests that diet could be an important therapy for improving muscle function during motor diseases such as ALS."

Next up is to define the proteins in neurons that are being altered by diet restriction, he said.

An Ellison Medical Foundation New Scholar Award (AG-NS-0415-07) to Dr. Eaton supported this work. Dr. Rawson is supported by grant T32-AG021890 from the National Institute on Aging, National Institutes of Health.

On the Web and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website or follow us on Twitter @uthscsa.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $231 million in fiscal year 2011. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>