Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The love song of a fly

03.03.2011
Neurobiologists at Vienna’s Research Institute of Molecular Pathology use the mating ritual of the fruit fly to study how the nervous system initiates, controls and utilizes behavior. Using newly developed thermogenetic methods, the researchers are able to initiate the courtship song of the male fly by “remote control”, and study the involved neural networks. The scientific journal NEURON recently published their findings.

Male fruit flies of the Drosophila melanogaster species perform a complex courtship ritual to attract the attention of female flies and make them amenable to mating. As part of the ritual, the male fly performs a “song” by extending a wing and vibrating it. The pulsating acoustic signal produced by this exercise sounds rather like static crackling or humming to the human ear. However, the female fly finds the sound irresistible. Singing is an important part of the fly's courtship; how well the male performs its song is crucial for the success of its mating.

Under natural circumstances, the sight and smell of a female fly induce courtship in the male. At the Institute of Molecular Pathology in Vienna, scientists have developed a kind of molecular “remote control” to initiate the ritual. Anne von Philipsborn, a biologist and Postdoc in the lab of IMP Director Barry Dickson, works with genetically modified fruit flies. By raising the ambient temperature, she can get an isolated male fly - in the absence of a female, and presumably not thinking at all about sex - to become aroused and initiate courtship.

This condition is achieved by the use of a method known as thermal activation. Defined sets of nerve cells (neurons) are fitted with temperature-sensitive ion channels. These channels open up when the temperature approaches 30 degrees and become permeable for certain small molecules. The flow of ions, in turn, activates the nerve cell and triggers an impulse.

By switching on and off targeted nerve cells, the neurobiologists in Vienna were able to identify two centers in the fly’s nervous system that control singing. The command to sing comes from a center located in the brain. This network of cells receives input from various sources; the most important of these are sensory organs and other regions of the brain. What the fly sees, hears and smells is channeled to this circuit and, together with pre-existing information obtained from prior experience, a decision is made to court or not to court the female.

The second neural circuit is located in the chest and is connected to the muscles that move the wings. This network is a so-called pattern generator. It coordinates the movement of the muscles and produces their rhythmic pattern.

For the scientists at the IMP, the courtship song of the fruit fly serves as a model to investigate the neural mechanisms of decision-making, action selection, and motor pattern generation. In short, they want to find out how meaningful behavior is orchestrated.

Having found the key neurons that make the fly sing, the team of neurobiologists will continue to look deeper into the mechanisms that control behavior. Barry Dickson explains their future plans: “We now need to figure out exactly how this circuit works under normal conditions, when the male is naturally aroused by a virgin female. And we are also now starting to use the same method to look for neurons that trigger other components of mating behavior, such as copulation itself."

Original publication: „Neuronal control of Drosophila courtship song“ (Anne C. von Philipsborn et al.). NEURON, February 10, 2011 (Vol. 69, pp. 509–522).

Contact:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
(+ 43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/contact/communications-department/press-releases/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>