Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The love song of a fly

03.03.2011
Neurobiologists at Vienna’s Research Institute of Molecular Pathology use the mating ritual of the fruit fly to study how the nervous system initiates, controls and utilizes behavior. Using newly developed thermogenetic methods, the researchers are able to initiate the courtship song of the male fly by “remote control”, and study the involved neural networks. The scientific journal NEURON recently published their findings.

Male fruit flies of the Drosophila melanogaster species perform a complex courtship ritual to attract the attention of female flies and make them amenable to mating. As part of the ritual, the male fly performs a “song” by extending a wing and vibrating it. The pulsating acoustic signal produced by this exercise sounds rather like static crackling or humming to the human ear. However, the female fly finds the sound irresistible. Singing is an important part of the fly's courtship; how well the male performs its song is crucial for the success of its mating.

Under natural circumstances, the sight and smell of a female fly induce courtship in the male. At the Institute of Molecular Pathology in Vienna, scientists have developed a kind of molecular “remote control” to initiate the ritual. Anne von Philipsborn, a biologist and Postdoc in the lab of IMP Director Barry Dickson, works with genetically modified fruit flies. By raising the ambient temperature, she can get an isolated male fly - in the absence of a female, and presumably not thinking at all about sex - to become aroused and initiate courtship.

This condition is achieved by the use of a method known as thermal activation. Defined sets of nerve cells (neurons) are fitted with temperature-sensitive ion channels. These channels open up when the temperature approaches 30 degrees and become permeable for certain small molecules. The flow of ions, in turn, activates the nerve cell and triggers an impulse.

By switching on and off targeted nerve cells, the neurobiologists in Vienna were able to identify two centers in the fly’s nervous system that control singing. The command to sing comes from a center located in the brain. This network of cells receives input from various sources; the most important of these are sensory organs and other regions of the brain. What the fly sees, hears and smells is channeled to this circuit and, together with pre-existing information obtained from prior experience, a decision is made to court or not to court the female.

The second neural circuit is located in the chest and is connected to the muscles that move the wings. This network is a so-called pattern generator. It coordinates the movement of the muscles and produces their rhythmic pattern.

For the scientists at the IMP, the courtship song of the fruit fly serves as a model to investigate the neural mechanisms of decision-making, action selection, and motor pattern generation. In short, they want to find out how meaningful behavior is orchestrated.

Having found the key neurons that make the fly sing, the team of neurobiologists will continue to look deeper into the mechanisms that control behavior. Barry Dickson explains their future plans: “We now need to figure out exactly how this circuit works under normal conditions, when the male is naturally aroused by a virgin female. And we are also now starting to use the same method to look for neurons that trigger other components of mating behavior, such as copulation itself."

Original publication: „Neuronal control of Drosophila courtship song“ (Anne C. von Philipsborn et al.). NEURON, February 10, 2011 (Vol. 69, pp. 509–522).

Contact:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
(+ 43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/contact/communications-department/press-releases/

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>