Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The love song of a fly

03.03.2011
Neurobiologists at Vienna’s Research Institute of Molecular Pathology use the mating ritual of the fruit fly to study how the nervous system initiates, controls and utilizes behavior. Using newly developed thermogenetic methods, the researchers are able to initiate the courtship song of the male fly by “remote control”, and study the involved neural networks. The scientific journal NEURON recently published their findings.

Male fruit flies of the Drosophila melanogaster species perform a complex courtship ritual to attract the attention of female flies and make them amenable to mating. As part of the ritual, the male fly performs a “song” by extending a wing and vibrating it. The pulsating acoustic signal produced by this exercise sounds rather like static crackling or humming to the human ear. However, the female fly finds the sound irresistible. Singing is an important part of the fly's courtship; how well the male performs its song is crucial for the success of its mating.

Under natural circumstances, the sight and smell of a female fly induce courtship in the male. At the Institute of Molecular Pathology in Vienna, scientists have developed a kind of molecular “remote control” to initiate the ritual. Anne von Philipsborn, a biologist and Postdoc in the lab of IMP Director Barry Dickson, works with genetically modified fruit flies. By raising the ambient temperature, she can get an isolated male fly - in the absence of a female, and presumably not thinking at all about sex - to become aroused and initiate courtship.

This condition is achieved by the use of a method known as thermal activation. Defined sets of nerve cells (neurons) are fitted with temperature-sensitive ion channels. These channels open up when the temperature approaches 30 degrees and become permeable for certain small molecules. The flow of ions, in turn, activates the nerve cell and triggers an impulse.

By switching on and off targeted nerve cells, the neurobiologists in Vienna were able to identify two centers in the fly’s nervous system that control singing. The command to sing comes from a center located in the brain. This network of cells receives input from various sources; the most important of these are sensory organs and other regions of the brain. What the fly sees, hears and smells is channeled to this circuit and, together with pre-existing information obtained from prior experience, a decision is made to court or not to court the female.

The second neural circuit is located in the chest and is connected to the muscles that move the wings. This network is a so-called pattern generator. It coordinates the movement of the muscles and produces their rhythmic pattern.

For the scientists at the IMP, the courtship song of the fruit fly serves as a model to investigate the neural mechanisms of decision-making, action selection, and motor pattern generation. In short, they want to find out how meaningful behavior is orchestrated.

Having found the key neurons that make the fly sing, the team of neurobiologists will continue to look deeper into the mechanisms that control behavior. Barry Dickson explains their future plans: “We now need to figure out exactly how this circuit works under normal conditions, when the male is naturally aroused by a virgin female. And we are also now starting to use the same method to look for neurons that trigger other components of mating behavior, such as copulation itself."

Original publication: „Neuronal control of Drosophila courtship song“ (Anne C. von Philipsborn et al.). NEURON, February 10, 2011 (Vol. 69, pp. 509–522).

Contact:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
(+ 43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/contact/communications-department/press-releases/

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>