Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost in Translation

09.01.2009
The enzyme machine that translates a cell’s DNA code into the proteins of life is nothing if not an editorial perfectionist.

Johns Hopkins researchers, reporting this week in Nature, have discovered a new “proofreading step” during which the suite of translational tools called the ribosome recognizes errors, just after making them, and definitively responds by hitting its version of a “delete” button.

It turns out, the Johns Hopkins researchers say, that the ribosome exerts far tighter quality control than anyone ever suspected over its precious protein products which, as workhorses of the cell, carry out the very business of life.

“What we now know is that in the event of miscoding, the ribosome cuts the bond and aborts the protein-in-progress, end of story,” says Rachel Green, a Howard Hughes Medical Institute investigator and professor of molecular biology and genetics in the Johns Hopkins University School of Medicine. “There’s no second chance.”

Previously, Green says, molecular biologists thought the ribosome tightly managed its actions only prior to the actual incorporation of the next building block by being super-selective about which chemical ingredients it allows to enter the process.

Because a protein’s chemical “shape” dictates its function, mistakes in translating assembly codes can be toxic to cells, resulting in the misfolding of proteins often associated with neurodegenerative conditions. Working with bacterial ribosomes, Green and her team watched them react to lab-induced chemical errors and were surprised to see that the protein-manufacturing process didn’t proceed as usual, getting past the error and continuing its “walk” along the DNA’s protein-encoding genetic messages.

“We thought that once the mistake was made, it would have just gone on to make the next bond and the next,” Green says. “But instead, we noticed that one mistake on the ribosomal assembly line begets another, and it’s this compounding of errors that leads to the partially finished protein being tossed into the cellular trash,” she adds.

To their further surprise, the ribosome lets go of error-laden proteins 10,000 times faster than it would normally release error-free proteins, a rate of destruction that Green says is “shocking” and reveals just how much of a stickler the ribosome is about high-fidelity protein synthesis.

“These are not subtle numbers,” she says, noting that there’s a clear biological cost for this ribosomal editing and jettisoning of errors, but a necessary expense.

“The cell is a wasteful system in that it makes something and then says, forget it, throw it out,” Green concedes. “But it’s evidently worth the waste to increase fidelity. There are places in life where fidelity matters.”

The research was funded by the National Institutes of Health with support from the Howard Hughes Medical Institute.

In addition to Rachel Green, Hani S. Zaher, also of Johns Hopkins, was author of the paper.

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu
http://pmcb.jhu.edu/old/old-faculty/green.html

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>