Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of memory in Alzheimer's mice models reversed through gene therapy

23.04.2014

UAB researchers identify the protein which prevents memory consolidation when blocked

Alzheimer's disease is the first cause of dementia and affects some 400,000 people in Spain alone. However, no effective cure has yet been found. One of the reasons for this is the lack of knowledge on the cellular mechanisms which cause alterations in nerve transmissions and the loss of memory in the initial stages of the disease.


This image shows Crtc1 detection in mice neurons (in green).

Credit: Universitat Autonoma de Barcelona

Researchers from the Institute of Neuroscience at the Universitat Autònoma de Barcelona have discovered the cellular mechanism involved in memory consolidation and were able to develop a gene therapy which reverses the loss of memory in mice models with initial stages of Alzheimer's disease.

The therapy consists in injecting into the hippocampus - a region of the brain essential to memory processing - a gene which causes the production of a protein blocked in patients with Alzheimer's, the "Crtc1" (CREB regulated transcription coactivator-1). The protein restored through gene therapy gives way to the signals needed to activate the genes involved in long-term memory consolidation.

To identify this protein, researchers compared gene expression in the hippocampus of healthy control mice with that of transgenic mice which had developed the disease. Through DNA microchips, they identified the genes ("transcriptome") and the proteins ("proteome") which expressed themselves in each of the mice in different phases of the disease.

Researchers observed that the set of genes involved in memory consolidation coincided with the genes regulating Crtc1, a protein which also controls genes related to the metabolism of glucose and to cancer. The alteration of this group of genes could cause memory loss in the initial stages of Alzheimer's disease.

In persons with the disease, the formation of amyloid plaque aggregates, a process known to cause the onset of Alzheimer's disease, prevents the Crtc1 protein from functioning correctly. "When the Crtc1 protein is altered, the genes responsible for the synapsis or connections between neurons in the hippocampus cannot be activated and the individual cannot perform memory tasks correctly", explains Carlos Saura, researcher of the UAB Institute of Neuroscience and head of the research.

According to Saura, "this study opens up new perspectives on therapeutic prevention and treatment of Alzheimer's disease, given that we have demonstrated that a gene therapy which activates the Crtc1 protein is effective in preventing the loss of memory in lab mice".

The research, published today as a featured article in The Journal of Neuroscience, the official journal of the US Society of Neuroscience, paves the way for a new therapeutic approach to the disease. One of the main challenges in finding a treatment for the disease in the future is the research and development of pharmacological therapies capable of activating the Crtc1 protein, with the aim of preventing, slowing down or reverting cognitive alterations in patients.

Carlos Saura | Eurek Alert!

Further reports about: Alzheimer's Autonoma Neuroscience alterations cognitive consolidation genes therapy

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>