Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look into the future with genetic programming

07.04.2014

With predictive modeling techniques, it is possible to predict anything from clients’ shopping habits and illnesses to a golfer’s handicap. The only prerequisite is to have enough examples. In a doctoral thesis from the University of Borås in Sweden, Rikard König has adapted the technique of genetic programming so it can be used for such purposes.

The doctoral thesis, Enhancing Genetic Programming for Predictive Modeling, is about machine learning, more specifically predictive modeling, a field of computer science. Machine learning entails getting a computer to learn something, to become intelligent. Predictive modeling is a broad area of machine learning where a computer learns things on the basis of positive and negative examples, finds connections and explains why things turn out in a certain way.

Within predictive modeling, there is an array of techniques that are used to produce models that can predict practically anything, for instance, how people might be expected to respond to advertisements. Since these are general techniques, it is possible to predict just about anything as long as there are enough previous examples, i.e. sufficient information. The goal of predictive modeling is to find an accurate model and preferably one that explains something that was not previously known.

Genetic programming (GP) is a general optimization technique that is based on Darwin’s theories on evolution and natural selection. It is a technique that was not really designed for predictive modelling.

”In my thesis, I present several improvements that increase the accuracy and comprehensibility of models created with GP. There are many researchers who work with GP but my solutions are unique,” says Rikard König, PhD student at the School of Business and IT at the University of Borås.

In order to produce a model with the help of GP, you start off with, say, a thousand randomly chosen models and let them compete with each other. You work out how many errors the models make on known examples and then base a natural selection on the results. The most accurate models have a greater chance of surviving and having “children” – you pair off two models. These “children” are then a combination of their parents and form a new generation which is hopefully stronger. A small number of models can also be subjected to mutation, just like in nature.

”The new generation is assessed in the same way, using the known examples. They compete, pair off and give rise to an even stronger new generation. The process is repeated until a sufficiently accurate model has been found. The fascinating thing is that evolution is such a powerful way of searching through all possible solutions,” says Rikard König.

GP has several properties that make it suitable for predictive modeling. One example is that the search is independent of the representation of the model. This means that the exact representation and way of measuring errors can be adapted to individual problems. This is not normally the case with traditional predictive techniques. At the same time, the technique is problematic when a highly complex model is needed since the search goes through all possible solutions and the number of solutions increases exponentially with the complexity of the models.

”One of my improvements is a hybrid technique for creating an accurate and comprehensible model when the search space is extremely large, i.e. when a model with high complexity is required. The solution is to send relatively strong models created by a traditional predictive technique into a generation to guide the search in a promising direction.”

As part of his research, Rikard König has also produced an application that realizes his research results. The programme can be downloaded from www.grex.se

Rikard König is working on several research projects where these solutions may be put to use. For instance, one project is in collaboration with Scania where data from tens of thousands of lorries have been saved and will be analysed in order to explain what effect the driver has on fuel consumption. Another example, which also shows how generic the technique is, is a new project where golf swings from 500 golfers will be analysed. Here, the aim is to find general explanations for what distinguishes good swings from bad swings. Another aim is to be able to automatically recommend exercises for individual golfers on the basis of each person’s particular needs.

Thesis title: Enhancing Genetic Programming for Predictive Modeling

Contact: Rikard König, rikard.konig@hb.se, +46-33 435 5945, +46- 73922 96 56

Pressofficer Anna Kjellsson, anna.kjellsson@hb.se, +46-734 61 20 01

Anna Kjellsson | idw - Informationsdienst Wissenschaft

Further reports about: Genetic accurate errors improvements pair produce programming technique

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>