Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Longevity tied to genes that preserve tips of chromosomes

13.11.2009
A team led by researchers at Albert Einstein College of Medicine of Yeshiva University has found a clear link between living to 100 and inheriting a hyperactive version of an enzyme that rebuilds telomeres — the tip ends of chromosomes. The findings appear in the latest issue of the Proceedings of the National Academy of Sciences.

Yousin Suh, Ph.D.Telomeres play crucial roles in aging, cancer and other biological processes. Their importance was recognized last month, when three scientists were awarded the 2009 Nobel Prize in Physiology and Medicine for determining the structure of telomeres and discovering how they protect chromosomes from degrading.

Telomeres are relatively short sections of specialized DNA that sit at the ends of all chromosomes. One of the Nobel Prize winners, Elizabeth Blackburn, Ph.D., of the University of California at San Francisco, has compared telomeres to the plastic tips at the ends of shoelaces that prevent the laces from unraveling.

Each time a cell divides, its telomeres erode slightly and become progressively shorter with each cell division. Eventually, telomeres become so short that their host cells stop dividing and lapse into a condition called cell senescence. As a result, vital tissues and important organs begin to fail and the classical signs of aging ensue.

In investigating the role of telomeres in aging, the Einstein researchers studied Ashkenazi Jews because they are a homogeneous population that was already well studied genetically. Three groups were enrolled: 86 very old — but generally healthy — Gil Atzmon, Ph.D.people (average age 97); 175 of their offspring; and 93 controls (offspring of parents who had lived a normal lifespan).

"Telomeres are one piece of the puzzle that accounts for why some people can live so long," says Gil Atzmon, Ph.D., assistant professor of medicine and of genetics at Einstein, Genetic Core Leader for The LonGenity Project at Einstein's Institute for Aging Research, and a lead author of the paper. "Our research was meant to answer two questions: Do people who live long lives tend to have long telomeres? And if so, could variations in their genes that code for telomerase account for their long telomeres?"

The answer to both questions was "yes."

"As we suspected, humans of exceptional longevity are better able to maintain the length of their telomeres," said Yousin Suh, Ph.D., associate professor of medicine and of genetics at Einstein and senior author of the paper. "And we found that they owe their longevity, at least in part, to advantageous variants of genes involved in telomere maintenance."

More specifically, the researchers found that participants who have lived to a very old age have inherited mutant genes that make their telomerase-making system extra active and able to maintain telomere length more effectively. For the most part, these people were spared age-related diseases such as cardiovascular disease and diabetes, which cause most deaths among elderly people.

"Telomeres are one piece of the puzzle that accounts for why some people can live so long."

-- Gil Atzmon, Ph.D."Our findings suggest that telomere length and variants of telomerase genes combine to help people live very long lives, perhaps by protecting them from the diseases of old age," says Dr. Suh. "We're now trying to understand the mechanism by which these genetic variants of telomerase maintain telomere length in centenarians. Ultimately, it may be possible to develop drugs that mimic the telomerase that our centenarians have been blessed with."

The study, "Genetic Variation in Human Telomerase is Associated with Telomere Length in Ashkenazi Centenarians," appears in the November 9 online issue of the Proceedings of the National Academy of Sciences. In addition to Drs. Atzmon and Suh, the study's other Einstein researchers were co-lead author Miook Cho, M.S., Temuri Budagov, M.S., Micol Katz, M.D., Xiaoman Yang, M.D., Glenn Siegel, M.D., Aviv Bergman, Ph.D., Derek M. Huffman, Ph.D., Clyde B. Schechter, M.D., and Nir Barzilai, M.D.

Deirdre Branley | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>