Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Longevity tied to genes that preserve tips of chromosomes

A team led by researchers at Albert Einstein College of Medicine of Yeshiva University has found a clear link between living to 100 and inheriting a hyperactive version of an enzyme that rebuilds telomeres — the tip ends of chromosomes. The findings appear in the latest issue of the Proceedings of the National Academy of Sciences.

Yousin Suh, Ph.D.Telomeres play crucial roles in aging, cancer and other biological processes. Their importance was recognized last month, when three scientists were awarded the 2009 Nobel Prize in Physiology and Medicine for determining the structure of telomeres and discovering how they protect chromosomes from degrading.

Telomeres are relatively short sections of specialized DNA that sit at the ends of all chromosomes. One of the Nobel Prize winners, Elizabeth Blackburn, Ph.D., of the University of California at San Francisco, has compared telomeres to the plastic tips at the ends of shoelaces that prevent the laces from unraveling.

Each time a cell divides, its telomeres erode slightly and become progressively shorter with each cell division. Eventually, telomeres become so short that their host cells stop dividing and lapse into a condition called cell senescence. As a result, vital tissues and important organs begin to fail and the classical signs of aging ensue.

In investigating the role of telomeres in aging, the Einstein researchers studied Ashkenazi Jews because they are a homogeneous population that was already well studied genetically. Three groups were enrolled: 86 very old — but generally healthy — Gil Atzmon, Ph.D.people (average age 97); 175 of their offspring; and 93 controls (offspring of parents who had lived a normal lifespan).

"Telomeres are one piece of the puzzle that accounts for why some people can live so long," says Gil Atzmon, Ph.D., assistant professor of medicine and of genetics at Einstein, Genetic Core Leader for The LonGenity Project at Einstein's Institute for Aging Research, and a lead author of the paper. "Our research was meant to answer two questions: Do people who live long lives tend to have long telomeres? And if so, could variations in their genes that code for telomerase account for their long telomeres?"

The answer to both questions was "yes."

"As we suspected, humans of exceptional longevity are better able to maintain the length of their telomeres," said Yousin Suh, Ph.D., associate professor of medicine and of genetics at Einstein and senior author of the paper. "And we found that they owe their longevity, at least in part, to advantageous variants of genes involved in telomere maintenance."

More specifically, the researchers found that participants who have lived to a very old age have inherited mutant genes that make their telomerase-making system extra active and able to maintain telomere length more effectively. For the most part, these people were spared age-related diseases such as cardiovascular disease and diabetes, which cause most deaths among elderly people.

"Telomeres are one piece of the puzzle that accounts for why some people can live so long."

-- Gil Atzmon, Ph.D."Our findings suggest that telomere length and variants of telomerase genes combine to help people live very long lives, perhaps by protecting them from the diseases of old age," says Dr. Suh. "We're now trying to understand the mechanism by which these genetic variants of telomerase maintain telomere length in centenarians. Ultimately, it may be possible to develop drugs that mimic the telomerase that our centenarians have been blessed with."

The study, "Genetic Variation in Human Telomerase is Associated with Telomere Length in Ashkenazi Centenarians," appears in the November 9 online issue of the Proceedings of the National Academy of Sciences. In addition to Drs. Atzmon and Suh, the study's other Einstein researchers were co-lead author Miook Cho, M.S., Temuri Budagov, M.S., Micol Katz, M.D., Xiaoman Yang, M.D., Glenn Siegel, M.D., Aviv Bergman, Ph.D., Derek M. Huffman, Ph.D., Clyde B. Schechter, M.D., and Nir Barzilai, M.D.

Deirdre Branley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>