Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term benefits from a ‘moment of silence’

19.03.2012
By temporarily silencing a hyperactive gene, scientists dramatically boost the efficiency of mouse cloning
In principle, somatic cell nuclear transfer (SCNT) is a potent tool for scientists looking to produce exact genetic replicas of a particular animal. By injecting a nucleus from an adult cell into an oocyte from which the nucleus has been removed, one can initiate the embryonic development process and derive a clone of the ‘donor’ animal.

Unfortunately, this technique is terribly inefficient, with a success rate of 1–2% in mice. “This must be due to some errors in the reprogramming of the donor genome into the ‘totipotent’ state, which is equivalent to the state observed in conventionally fertilized embryos,” explains Atsuo Ogura of the RIKEN BioResource Center in Tsukuba. However, Ogura and colleagues have now made significant progress in clearing a major roadblock thwarting SCNT success.

During development of female mammalian embryos, one of the two X chromosomes is targeted for inactivation, thereby ensuring that both males and females achieve equivalent expression of X-linked genes. This inactivation depends on RNA produced by the Xist gene, which blankets the selected chromosome and sets the inactivation process in motion.
Ogura and his team previously determined that Xist is inappropriately activated in SCNT embryos, impairing expression of essential genes, and have now set about correcting this defect. Irreversibly inactivating this gene is not an option, so the researchers injected molecules called ‘short interfering RNAs’ (siRNAs) that directly inhibited Xist activity in early stage male SCNT embryos, which must maintain their single X chromosome in order to survive.

This treatment markedly boosted expression of X chromosomal genes relative to untreated controls, and although the direct effects of siRNA injection were fleeting, the benefits lingered. “The siRNA was effective for only 72 hours,” says Ogura, “but it had long-term effects not only on the birth rate but also on the health status of the offspring.” Indeed, his team achieved a success rate of nearly 20%—ten-fold better than previous efforts—and generated mouse pups that were apparently normal and healthy.

The implications for this improved efficiency extend beyond mass-produced mice, and this approach could represent a step toward improving the economics of cloning other species such as pigs and sheep, which are harder to genetically manipulate but nevertheless of considerable agricultural and scientific interest. “Our goal is to increase the birth rate of healthy cloned offspring not only in mice but also other mammals,” says Ogura, “and to understand the mechanisms by which the genome is drastically altered during the life cycle.”

The corresponding author for this highlight is based at the Bioresource Engineering Division, RIKEN BioResource Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>