Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-Sought Protein Structure May Show How ‘Gene Switch’ Works

10.02.2009
The bacterium behind one of mankind’s deadliest scourges, tuberculosis, is helping researchers at the Commerce Department’s National Institute of Standards and Technology (NIST) and the Department of Energy’s Brookhaven National Laboratory (BNL) move closer to answering the decades-old question of what controls the switching on and off of genes that carry out all of life’s functions.

In a Journal of Biological Chemistry paper* posted online this week, the NIST/BNL team reports that it has defined—for the first time—the structure of a “metabolic switch” found inside most types of bacteria—the cyclic AMP (cAMP) receptor protein, or CRP—in its “off” state.

CRP is the “binding site” (attachment point) for cAMP, a small molecule that, once attached, serves as the signal to throw the switch. This “on” state of CRP then turns on the genes that help a microbe survive in a human host.

The researchers hope that once the switching mechanism is understood the data can be used to develop new methods for preventing tuberculosis and other pathogenic bacterial diseases.

“We know that many pathogenic bacteria use cAMP as a signal for activating genes that keep the microbes thriving in adverse conditions, and therefore, remaining virulent,” says NIST biochemist and lead author Travis Gallagher. “Blocking these processes might provide ways to shut down infections and save lives.”

Additionally, the researchers believe that learning how this specific protein switch works may provide insight into how genes in general are regulated.

The biochemical puzzle surrounding the CRP switch is the mechanism by which the protein binds cAMP at one end, then attaches to—and activates—a gene (DNA) at the other end. Believing that the protein somehow changes its overall shape after binding cAMP, researchers set out 25 years ago to study the structure of CRP in both its active state (with cAMP bound to it) and inactive state (without bound cAMP) to document where the morphing occurs.

Unfortunately, the task proved to be extremely difficult. Using CRP from the bacterium Escherichia coli, researchers were able to crystallize the protein in its active (“on”) state and examine the structure using a technique called X-ray diffraction. However, the structure of the inactive (“off”) E. coli CRP eluded them as attempts to crystallize it repeatedly failed. With only the structure of the “on” state defined, the genetic switching mechanism remained a mystery.

The breakthrough was achieved when Gallagher; NIST colleagues Prasad Reddy, Natasha Smith and Sook-Kyung Kim; and BNL’s Howard Robinson substituted the CRP from Mycobacterium tuberculosis [the pathogen that causes tuberculosis] for the E. coli protein.

The team’s initial success—obtaining crystals of CRP in the “off” state—was dramatic given that no one had accomplished the feat in nearly three decades of trying with E. coli. But the real excitement came when the crystals were examined with X-ray diffraction.

“Although the M. tuberculosis protein in the ‘off’ state consists of two subunits that are genetically identical, we were surprised to see that the subunits were not structurally symmetrical as well,” Gallagher says. “In most two-subunit proteins, each subunit has the same conformation as the other.”

Gallagher says that the NIST/BNL team theorizes that it is the asymmetry in the absence of cAMP that prevents the protein from attaching to DNA. This, in turn, keeps CRP from activating genes when they are not needed.

“Our next step is to crystallize M. tuberculosis CRP in the active state and define its structure,” Gallagher says. “When that is accomplished, we’ll be able to see the identical protein from the same organism in both states, which may give us the means to explain how CRP switches from its asymmetric form [inactive state] to its symmetrical [active state] form.”

The work detailed in the Journal of Biological Chemistry paper was performed at the University of Maryland Biotechnology Institute (UMBI)’s Center for Advanced Research in Biotechnology (CARB), a partnership among UMBI, NIST and Montgomery County, Md., that advances biotechnology by integrating chemical, physical and biomolecular sciences through research on biomolecular structure and function, systems biology and biometrology, and through the development of new technologies for measurement, analysis and design.

As a non-regulatory agency, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

* D.T. Gallagher, N. Smith, S-K Kim, H. Robinson and P.T. Reddy. Profound asymmetry in the structure of the cAMP-free cAMP receptor protein (CRP) from Mycobacterium tuberculosis. Journal of Biological Chemistry (published online Feb 4, 2009).

High-resolution versions of the graphics showing the "on" and "off" states of the TB cAMP receptor protein are available http://www.nist.gov/public_affairs/releases/tuberculosis.html.

A short video featuring NIST biochemist Travis Gallagher explaining how the TB cAMP receptor protein "gene switch" works is available at http://www.youtube.com/watch?v=3hpuu3maOhk.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>