Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long and short of sperm tails

08.08.2011
Experiments using fruit flies as a model system reveal a molecular mechanism underlying sperm morphogenesis in insects

A team of biologists in Japan has uncovered an unexpected role for mitochondria1, the power houses of cells, in the development of sperm in the fruit fly Drosophila melanogaster.


Figure 1: Giant mitochondria in the tail of fruit fly sperm elongate and show an increase in length, while the volume remains constant.
Copyright : © 2011 Shigeo Hayashi

Drosophila melanogaster belongs to a family of two-winged flies called the drosophilids. Some drosophilid species have sperm with short tails, but others have exceptionally long tails. Males of D. bifurca, for example, produce sperm with tails that are over twenty times as long as the insect itself. “The diversity of sperm morphology among drosophilid flies has long fascinated reproductive and evolutionary biologists alike,” says Shigeo Hayashi of the RIKEN Center for Developmental Biology, Kobe, who led the team.

Biologists believe that the long sperm found in some drosophilid species evolved in response to strong post-mating selection driven by ‘sperm competition’, the race between sperm from different males to fertilize an egg. Longer sperm would have the advantage of positioning their head closer to the egg.

Sperm movement is driven by waves that propagate along a hair-like motile structure called the flagellum within the sperm tail. The flagellum core, called the axoneme, is composed of microtubules formed of tubulin molecules arranged in chains. “We were aware from previous studies using mutant flies that the axoneme is dispensable for sperm cell elongation, so we set out to understand the underlying mechanism,” explains Hayashi.

In addition to the axoneme, the membrane-bound sperm tails of insects typically contain giant mitochondria that extend along their entire length, as well as free microtubules. Working with D. melanogaster, Hayashi and his colleagues showed that sperm tail growth is driven by the mutually dependent extension of the giant mitochondria and microtubules that form around them (Fig. 1).

Experiments with cultured spermatids, the precursors of sperm, revealed that sperm elongation crucially depends upon the integrity of mitochondria and the reorganization of microtubules at the growing tip. In addition, the researchers found that the essential sliding movement of microtubules at the tip requires accumulation of Milton, a mitochondria–microtubule linker protein.

Hayashi and colleagues showed that experimentally disrupting Milton and its associated protein dMiro, as well as the potential microtubule cross-linking proteins Nebbish and Fascetto, caused defective tail elongation, resulting in abnormal sperm. They also showed that spermatid tail elongation requires both the association between mitochondria and microtubules, and microtubule cross-linking. “We have demonstrated that mitochondria form a structural platform for microtubule reorganization, which supports robust elongation at the growing tip of the long sperm tail,” Hayashi concludes.

The corresponding author for this highlight is based at the Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology

Reference:
Noguchi, T., Koizumi, M. & Hayashi, S. Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila. Current Biology 21, 805–814 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>