Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long and short of cell signaling

02.08.2010
By bolstering a sophisticated computational model with quantitative experimental data, researchers begin to decipher the workings of a complex signaling network

Like a telegraph transmission, the significance of a cellular signal can change greatly depending on whether it arrives as a brief ‘dot’ or a sustained ‘dash’. For example, transient activation of extracellular receptor kinase 1/2 (ERK) by epidermal growth factor (EGF) causes cells to divide, while prolonged ERK activation induced by heregulin (HRG) instructs these same cells to differentiate.

Cell biologists have struggled to untangle the relationship between this signaling network and cell fate, but a collaborative effort between Mariko Okada-Hatakeyama at the RIKEN Center for Allergy and Immunology in Yokohama and Boris Kholodenko at University College Dublin in Ireland has achieved an important breakthrough by pairing quantitative experiments with computational modeling1.

Okada-Hatakeyama’s team previously examined the expression of c-fos, a so-called ‘immediate early gene’ whose expression is induced shortly following ERK activation, and obtained somewhat contradictory findings2. ”Early gene expression time-course profiles were the same regardless of whether the upstream ERK signal is transient or sustained,” she says. “However, levels of Fos protein were ‘all or none’ for sustained and transient signals, respectively.”

Based on an initial interpretation of their computational model of this pathway, Okada-Hatakeyama, Kholodenko and colleagues proposed that the effects of both HRG and EGF on c-fos expression were modulated purely by dual-specificity phosphatases (DUSPs), enzymes that inhibit ERK’s capability to induce c-fos. However, experiments with a forced reduction of DUSP in cultured cells did not fully replicate these predictions. “There were long and serious discussions whether [our experiment] was working properly or the model was wrong,” says Okada-Hatakeyama.

This reassessment led to experiments that enabled the researchers to demonstrate the existence of a second, previously unknown mechanism for repression of c-fos expression that is triggered only in response to HRG. Together, these two ERK-activated ‘negative feedback’ systems appropriately control c-fos transcription in the process of cellular differentiation.

In parallel, their model also revealed how the combination of ERK-induced c-fos expression and sustained signaling activity by ERK outside the nucleus lead to steady production of c-Fos protein. This system architecture results in a highly stable signaling arrangement that filters out extraneous background noise and induces all-or-none output, according to Okada-Hatakeyama. “We learned from this study that cells possess very simple but robust system structures that can fight against unwanted perturbations,” she says. “This cellular signaling network is still a ‘black box’ and what we can do [with computational modeling] is very much limited … but we hope to [untangle] the cell decision program someday.”

The corresponding author for this highlight is based at the Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology

Journal information

1. Nakakuki, T., Birtwistle, M.R., Saeki, Y., Yumoto, N., Ide, K., Nagashima, T., Brusch, L., Ogunnaike, B.A., Okada-Hatakeyama, M. & Kholodenko, B.N. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141, 884–896 (2010)

2. Nagashima, T., Shimodaira, H., Ide, K., Nakakuki, T., Tani, Y., Takahashi, K., Yumoto, N., & Hatakeyama, M. Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. The Journal of Biological Chemistry 282, 4045–4056 (2007)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6350
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>