Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lived mice are less active

04.07.2013
Female mice with a high life expectancy are less active and less explorative.

They also eat less than their fellow females with a lower life expectancy. Behavioral biologists from the University of Zurich reveal that there is a correlation between longevity and personality for female house mice, and a minimum amount of boldness is necessary for them to survive.


Female mice with greater life expectancy are less active and less explorative than their fellow females with lower life expectancy. UZH

Risky behavior can lead to premature death – in humans. Anna Lindholm and her doctoral student Yannick Auclair investigated whether this also applies to animals by studying the behavior of 82 house mice. They recorded boldness, activity level, exploration tendency and energy intake of female and male house mice with two different allelic variants on chromosome 17, thereby testing predictions of “life-history theory” on how individuals invest optimally in growth and reproduction. According to this theory, individuals with a greater life expectancy will express reactive personality traits and will be shy, less active and less explorative than individuals with a lower survival expectation.

Is personality reflected in life expectancy?
Female mice of the t haplotype, one of the two genetic variants on chromosome 17, are known to live longer. The t haplotype in house mice is a naturally occurring selfish genetic element that is transmitted to 90 percent of the offspring by t carrying males. Embryos that inherit a t copy from both parents, however, die before birth. With his experiment, Yannick Auclair wanted to investigate whether there was a correlation between this selfish genetic element and the personality of the mice.
Live fast, die young – even in mice
The researchers reveal that the longer-lived t haplotype females are less active than the shorter-lived non-carrier females. They also consume less food, are less explorative and thus express reactive personality traits favouring cautiousness and energy conservation, as predicted by theory. “For the first time, we report personality traits associated with a selfish genetic element that influences life expectancy” says Auclair. According to the research team, female mice with a longer life expectancy follow the strategy “live slow, die old” whereas those with a shorter life expectancy live according to the principle “live fast, die young”.

In contrast to the predictions of the “life-history” theory, there are no extremely individuals among t haplotype female mice. The researchers suppose that selection does not favor mice that are too cautious. “In order for a mouse to find food and be able to reproduce, clearly a minimum level of boldness is required,” explains Auclair. “In such a situation, large variation will not develop.”

Literature:
Yannick Auclair, Barbara König, Anna K. Lindholm. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice. PLoS ONE. June 24, 2013. doi:10.1371/journal.pone.0067130.
Contact:
Prof. Dr. Barbara König
Yannick Auclair
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Tel. +41 44 635 52 70
E-Mail: barbara.koenig@ieu.uzh.ch
E-Mail: yannick.auclair@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>