Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lived breast stem cells could retain cancer legacy

27.01.2014
Researchers from Melbourne's Walter and Eliza Hall Institute have discovered that breast stem cells and their 'daughters' have a much longer lifespan than previously thought, and are active in puberty and throughout life.

The longevity of breast stem cells and their daughters means that they could harbour genetic defects or damage that progress to cancer decades later, potentially shifting back the timeline of breast cancer development.

The finding is also integral to identifying the 'cells of origin' of breast cancer and the ongoing quest to develop new treatments and diagnostics for breast cancer.

Breast stem cells were isolated in 2006 by Professors Jane Visvader and Geoff Lindeman and their colleagues at the Walter and Eliza Hall Institute.

Now, in a project led by Dr Anne Rios and Dr Nai Yang Fu that tracked normal breast stem cells and their development the team has discovered that breast stem cells actively maintain breast tissue for most of the life of the individual and contribute to all major stages of breast development. The research was published today in the journal Nature.

Professor Lindeman, who is also an oncologist at The Royal Melbourne Hospital, said discovering the long lifespan and programming of breast stem cells would have implications for identifying the cells of origin of breast cancers.

"Given that these stem cells – and their 'daughter' progenitor cells – can live for such a long time and are capable of self renewing, damage to their genetic code could lead to breast cancer 10 or 20 years later," Professor Lindeman said. "This finding has important applications for our understanding of breast cancer. We hope that it will lead to the development of new treatment and diagnostic strategies in the clinic to help women with breast cancer in the future."

Professor Visvader said understanding the hierarchy and development of breast cells was critical to identifying the cells that give rise to breast cancer, and how and why these cells become cancerous. "Without knowing the precise cell types in which breast cancer originates, we will continue to struggle in our efforts to develop new diagnostics and treatments for breast cancer, or developing preventive strategies," Professor Visvader said.

Previous research from the institute team had already implicated some of these immature breast cells in cancer development. "In 2009, we showed that luminal progenitor cells, the daughters of breast stem cells, were the likely cell of origin for the aggressive BRCA1-associated basal breast cancers," Professor Visvader said. "The meticulous work of Anne and Nai Yang, using state-of-the-art three-dimensional imaging, has significantly improved our understanding of normal breast development and will have future applications for breast cancer."

The project should settle a debate that has been raging in the scientific field, confirming that breast stem cells were 'true' stem cells capable of renewing themselves and making all the cells of the mammary gland.

"Our team was amongst the first to isolate 'renewable' breast stem cells," Professor Visvader said. "However the existence of a common stem cell that can create all the cells lining the breast ducts has been a contentious issue in the field. In this study we've proven that ancestral breast stem cells function in puberty and adulthood and that they give rise to all the different cell types that make up the adult breast."

The research project was supported by the Australian National Health and Medical Research Council, Victorian Government, Australian Cancer Research Foundation, Qualtrough Research Fund, National Breast Cancer Foundation and Cure Cancer Australia.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>