Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lived breast stem cells could retain cancer legacy

27.01.2014
Researchers from Melbourne's Walter and Eliza Hall Institute have discovered that breast stem cells and their 'daughters' have a much longer lifespan than previously thought, and are active in puberty and throughout life.

The longevity of breast stem cells and their daughters means that they could harbour genetic defects or damage that progress to cancer decades later, potentially shifting back the timeline of breast cancer development.

The finding is also integral to identifying the 'cells of origin' of breast cancer and the ongoing quest to develop new treatments and diagnostics for breast cancer.

Breast stem cells were isolated in 2006 by Professors Jane Visvader and Geoff Lindeman and their colleagues at the Walter and Eliza Hall Institute.

Now, in a project led by Dr Anne Rios and Dr Nai Yang Fu that tracked normal breast stem cells and their development the team has discovered that breast stem cells actively maintain breast tissue for most of the life of the individual and contribute to all major stages of breast development. The research was published today in the journal Nature.

Professor Lindeman, who is also an oncologist at The Royal Melbourne Hospital, said discovering the long lifespan and programming of breast stem cells would have implications for identifying the cells of origin of breast cancers.

"Given that these stem cells – and their 'daughter' progenitor cells – can live for such a long time and are capable of self renewing, damage to their genetic code could lead to breast cancer 10 or 20 years later," Professor Lindeman said. "This finding has important applications for our understanding of breast cancer. We hope that it will lead to the development of new treatment and diagnostic strategies in the clinic to help women with breast cancer in the future."

Professor Visvader said understanding the hierarchy and development of breast cells was critical to identifying the cells that give rise to breast cancer, and how and why these cells become cancerous. "Without knowing the precise cell types in which breast cancer originates, we will continue to struggle in our efforts to develop new diagnostics and treatments for breast cancer, or developing preventive strategies," Professor Visvader said.

Previous research from the institute team had already implicated some of these immature breast cells in cancer development. "In 2009, we showed that luminal progenitor cells, the daughters of breast stem cells, were the likely cell of origin for the aggressive BRCA1-associated basal breast cancers," Professor Visvader said. "The meticulous work of Anne and Nai Yang, using state-of-the-art three-dimensional imaging, has significantly improved our understanding of normal breast development and will have future applications for breast cancer."

The project should settle a debate that has been raging in the scientific field, confirming that breast stem cells were 'true' stem cells capable of renewing themselves and making all the cells of the mammary gland.

"Our team was amongst the first to isolate 'renewable' breast stem cells," Professor Visvader said. "However the existence of a common stem cell that can create all the cells lining the breast ducts has been a contentious issue in the field. In this study we've proven that ancestral breast stem cells function in puberty and adulthood and that they give rise to all the different cell types that make up the adult breast."

The research project was supported by the Australian National Health and Medical Research Council, Victorian Government, Australian Cancer Research Foundation, Qualtrough Research Fund, National Breast Cancer Foundation and Cure Cancer Australia.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>