Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-lasting sensory loss in WTC workers

Impaired ability to detect odors and irritants 2 years after buildings' collapse

New research from the Monell Center and collaborating institutions reports that workers exposed to the complex mixture of toxic airborne chemicals following the 9/11 disaster had a decreased ability to detect odors and irritants two years after the exposure.

"The nose performs many sensory functions that are critical for human health and safety," said lead author Pamela Dalton, PhD, MPH, an environmental psychologist at Monell. "The sensory system that detects irritants is the first line of defense to protect the lungs against airborne toxic chemicals. The loss of the ability of the nose to respond to a strong irritant means that the reflexes that protect the lungs from toxic exposures will not be triggered."

Individuals involved in rescue, recovery, demolition and clean-up at the World Trade Center (WTC) were exposed to a complex mixture of smoke, dust, fumes, and gases. In the study, reported online in the journal Environmental Health Perspectives, Dalton and collaborators studied 102 individuals who worked or volunteered at the WTC site on 9/11 and during the days and weeks afterward to determine whether this exposure affected their ability to detect odors and irritants.

Forty-four percent of the workers reported being in lower Manhattan on 9/11 and 97 percent worked on the site during the week after the buildings' collapse.

Two years after the exposure, the WTC workers had decreased sensitivity to odors and irritants as compared to similar workers with no WTC exposure. Twenty-two percent of the WTC workers had a diminished ability to detect odors and nearly 75 percent had an impaired ability to detect irritants.

Workers exposed to the dust cloud immediately after the buildings' collapse had the most extreme loss of sensitivity to irritants, with an almost complete inability to detect the nasal irritant used in the study.

Almost none of the individuals tested recognized that their ability to detect odors and irritants was compromised.

Health screenings of WTC workers had documented the effects of inhaled exposure on the lungs and respiratory function, but little was known about the impact on sensory systems of the nose. These sensory systems include the olfactory system, which detects odors, and the somatosensory system, responsible for detecting irritants, chemicals that cause pain, tingling, burning, stinging, or prickling.

The inability to detect irritants and odors is a critical safety concern, especially since the workers were not aware of their impairment.

"Odors also serve a protective function, such as the ability to identify smoke from a fire, leaking gas, or spoiled food," said Dalton.

The authors suggest that the ability to smell and detect irritants should be evaluated regularly in WTC responders and other workers having pollutant exposures.

Future studies will attempt to follow the workers to assess recovery and identify factors associated with more complete recovery.

Also contributing to the study were Michele Gould, Ryan McDermott, Tamika Wilson, Christopher Maute, Mehmet Ozdener, and Kai Zhao from Monell; Richard Opiekun from the New Jersey Department of Health and Senior Services; Edward Emmett from the University of Pennsylvania School of Medicine; Peter Lees from the Johns Hopkins School of Public Health; and Robin Herbert and Jacqueline Moline from Mount Sinai School of Medicine. The study was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

Leslie Stein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>