Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long bone shape: a family affair

04.10.2011
Although humans and chimpanzees move quite differently, muscle attachment sites at their thighbones are similar. This result, which has recently been published by anthropologists of Zurich University in the scientific journal «Anatomical Record», has major consequences for the interpretation of fossil hominin finds.

PhD student Naoki Morimoto, member of the Computer-Assisted Paleoanthropology group of Ch. Zollikofer and M. Ponce de León, and junior author of the study, was surprised by his own findings. Although humans are bipeds, and chimps are quadrupeds, muscle attachment sites at their thighbones are quite similar.


Great ape virtopsy: virtual preparation of skin, muscles, and bone of a young chimpanzee. UZH


Muscle attachment areas on the right thighbone (seen from lateral-posterior): During human-chimp evolution, the hip extensor muscle glutaeus maximus (GM) has «moved» from below to above a conspicuous bony crest (black arrowheads). In gorillas the GM muscle is situated below the crest, together with the vastus lateralis (VL) muscle. UZH

Attachment sites differ substantially, however, between chimpanzees and gorillas, although these great apes species move similarly. Interestingly, Morimoto’s results are in line with insights from genetics: humans and chimps are evolutionary sister species, while gorillas are more distant relatives, like cousins. Morimoto explains the seeming paradox of his results: this is not «form follows function», but «form follows family».

Functional inferences: a cautionary tale

The new findings have far-reaching implications for the interpretation of fossil hominin remains. Fossil thighbone shafts are often well preserved, but it now appears that inferences about locomotor behavior must be drawn with caution, while inferences about the fossil’s evolutionary relationships might be more straightforward. Anthropologist Ch. Zollikofer explains: «the transition from great-ape-like quadrupedal to human-like bipedal locomotion is accompanied by several changes in the hip and thighbones, but currently we cannot infer functional change from structural change with any certainty.» And he asks the next big question of paleoanthropology: «Why did the last common ancestor of humans and chimps, who might have lived 7-8 million years ago, evolve novel thighbone features?»

Virtual dissection

To get a detailed look at great ape musculoskeletal anatomy, the research team combined high-resolution computed tomography with computer-assisted virtual dissection. Great ape bodies are a scarce and valuable resource for scientific studies, and anthropologists are increasingly reluctant to «sacrifice» them for anatomical dissections. Virtual autopsy – or Virtopsy – is the method of choice. Virtopsy was pioneered by Michael Thali (Institute of Forensic Science, UZH), and is now used in forensic institutes worldwide. Anthropological virtopsy has enormous potential, as it permits virtual dissection of one single specimen by many different researchers, and according to many different criteria, without actually deteriorating the orginal body. Moreover, great ape virtopsy gives an immediate picture of the spatial relationships between soft and hard tissues (bones) of one and the same individual. Traditionally, bone morphology was studied on dry-skeleton specimens, and subsequently combined with muscle data obtained from dissections of other animals.

Acquiring 3D tomographic data of great ape bodies, however, is a complex endeavor, which requires collaboration across disciplines. To reach these goals, the «Visible Ape Consortium» was established, which has become an example of efficient transdisciplinary research at UZH (see below).

Literature:

Naoki Morimoto, Marcia S. Ponce De Leόn, Takeshi Nishimura and Christoph P.E. Zollikofer: Femoral Morphology and Femoropelvic Musculoskeletal Anatomy of Humans and Great Apes: A Comparative Virtopsy Study, in: The Anatomical Record, 294:1433–1445 (2011), DOI 10.1002/ar.21424

The Visible Ape Consortium:
Dr. Marcia Ponce de León and Prof. Christoph Zollikofer of the Anthropological Institute of the University of Zurich initiated the Visible Ape Consortium to acquire, archive and analyze 3D tomographic data of great ape bodies for anatomical and morphological research. Currently the following institutions form part of the Consortium: the Anthropological Institute, the Department of Diagnostic Imaging of the Vetsuisse Faculty (Prof. P. Kircher), the Institute of Forensic Science (Prof. M. Thali), the Center for Integrative Human Physiology (Prof. M. Gassmann), and Zoo Zurich. Close collaboration has been established with the Kyoto University Primate Research Institute in Inuyama, Japan (Dr. T. Nishimura).
Contact
Naoki Morimoto
Anthropological Institute
University of Zurich
Tel. +41 44 635 54 41
E-Mail: morimoto@aim.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>