Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long bone shape: a family affair

04.10.2011
Although humans and chimpanzees move quite differently, muscle attachment sites at their thighbones are similar. This result, which has recently been published by anthropologists of Zurich University in the scientific journal «Anatomical Record», has major consequences for the interpretation of fossil hominin finds.

PhD student Naoki Morimoto, member of the Computer-Assisted Paleoanthropology group of Ch. Zollikofer and M. Ponce de León, and junior author of the study, was surprised by his own findings. Although humans are bipeds, and chimps are quadrupeds, muscle attachment sites at their thighbones are quite similar.


Great ape virtopsy: virtual preparation of skin, muscles, and bone of a young chimpanzee. UZH


Muscle attachment areas on the right thighbone (seen from lateral-posterior): During human-chimp evolution, the hip extensor muscle glutaeus maximus (GM) has «moved» from below to above a conspicuous bony crest (black arrowheads). In gorillas the GM muscle is situated below the crest, together with the vastus lateralis (VL) muscle. UZH

Attachment sites differ substantially, however, between chimpanzees and gorillas, although these great apes species move similarly. Interestingly, Morimoto’s results are in line with insights from genetics: humans and chimps are evolutionary sister species, while gorillas are more distant relatives, like cousins. Morimoto explains the seeming paradox of his results: this is not «form follows function», but «form follows family».

Functional inferences: a cautionary tale

The new findings have far-reaching implications for the interpretation of fossil hominin remains. Fossil thighbone shafts are often well preserved, but it now appears that inferences about locomotor behavior must be drawn with caution, while inferences about the fossil’s evolutionary relationships might be more straightforward. Anthropologist Ch. Zollikofer explains: «the transition from great-ape-like quadrupedal to human-like bipedal locomotion is accompanied by several changes in the hip and thighbones, but currently we cannot infer functional change from structural change with any certainty.» And he asks the next big question of paleoanthropology: «Why did the last common ancestor of humans and chimps, who might have lived 7-8 million years ago, evolve novel thighbone features?»

Virtual dissection

To get a detailed look at great ape musculoskeletal anatomy, the research team combined high-resolution computed tomography with computer-assisted virtual dissection. Great ape bodies are a scarce and valuable resource for scientific studies, and anthropologists are increasingly reluctant to «sacrifice» them for anatomical dissections. Virtual autopsy – or Virtopsy – is the method of choice. Virtopsy was pioneered by Michael Thali (Institute of Forensic Science, UZH), and is now used in forensic institutes worldwide. Anthropological virtopsy has enormous potential, as it permits virtual dissection of one single specimen by many different researchers, and according to many different criteria, without actually deteriorating the orginal body. Moreover, great ape virtopsy gives an immediate picture of the spatial relationships between soft and hard tissues (bones) of one and the same individual. Traditionally, bone morphology was studied on dry-skeleton specimens, and subsequently combined with muscle data obtained from dissections of other animals.

Acquiring 3D tomographic data of great ape bodies, however, is a complex endeavor, which requires collaboration across disciplines. To reach these goals, the «Visible Ape Consortium» was established, which has become an example of efficient transdisciplinary research at UZH (see below).

Literature:

Naoki Morimoto, Marcia S. Ponce De Leόn, Takeshi Nishimura and Christoph P.E. Zollikofer: Femoral Morphology and Femoropelvic Musculoskeletal Anatomy of Humans and Great Apes: A Comparative Virtopsy Study, in: The Anatomical Record, 294:1433–1445 (2011), DOI 10.1002/ar.21424

The Visible Ape Consortium:
Dr. Marcia Ponce de León and Prof. Christoph Zollikofer of the Anthropological Institute of the University of Zurich initiated the Visible Ape Consortium to acquire, archive and analyze 3D tomographic data of great ape bodies for anatomical and morphological research. Currently the following institutions form part of the Consortium: the Anthropological Institute, the Department of Diagnostic Imaging of the Vetsuisse Faculty (Prof. P. Kircher), the Institute of Forensic Science (Prof. M. Thali), the Center for Integrative Human Physiology (Prof. M. Gassmann), and Zoo Zurich. Close collaboration has been established with the Kyoto University Primate Research Institute in Inuyama, Japan (Dr. T. Nishimura).
Contact
Naoki Morimoto
Anthropological Institute
University of Zurich
Tel. +41 44 635 54 41
E-Mail: morimoto@aim.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>