Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loneliness impacts DNA repair: The long and the short of telomeres

07.04.2014

Telomeres are DNA-protein complexes that function as protective caps at the ends of chromosomes. Biologists and veterinarians at the Vetmeduni Vienna recently examined the telomere length of captive African grey parrots. 

They found that the telomere lengths of single parrots were shorter than those housed with a companion parrot, which supports the hypothesis that social stress can interfere with cellular aging and a particular type of DNA repair. It suggests that telomeres may provide a biomarker for assessing exposure to social stress. The findings have been published in the open access journal PLOS ONE.


Lonley parrots have shorter telomers than those living in groups.

Photo: Denise Aydinonat

In captivity, grey parrots are often kept in social isolation, which can have detrimental effects on their health and wellbeing. So far there have not been any studies on the effects of long term social isolation from conspecifics on cellular aging. Telomeres shorten with each cell division, and once a critical length is reached, cells are unable to divide further (a stage known as ‘replicative senescence’).

Although cellular senescence is a useful mechanism to eliminate worn-out cells, it appears to contribute to aging and mortality. Several studies suggest that telomere shortening is accelerated by stress, but until now, no studies have examined the effects of social isolation on telomere shortening.

Using molecular genetics to assess exposure to stress

To test whether social isolation accelerates telomere shortening, Denise Aydinonat, a doctorate student at the Vetmeduni Vienna, conducted a study using DNA samples that she collected from African grey parrots during routine check-ups. African greys are highly social birds, but they are often reared and kept in isolation from other parrots (even though such conditions are illegal in Austria).

She and her collaborators compared the telomere lengths of single birds versus pair-housed individuals with a broad range of ages (from 1 to 45 years). Not surprisingly, the telomere lengths of older birds were shorter compared to younger birds, regardless of their housing. However, the important finding of the study was that single-housed birds had shorter telomeres than pair-housed individuals of the same age group.

Reading signs of stress by erosion of DNA

“Studies on humans suggest that people who have experienced high levels of social stress and deprivation have shorter telomeres,” says Dustin Penn from the Konrad Lorenz Institute of Ethology at the Vetmeduni Vienna. “But this study is the first to examine the effects of social isolation on telomere length in any species.” Penn and his team previously conducted experiments on mice, which were the first to show that exposure to crowding stress causes telomere shortening.

He points out that this new finding suggests that both extremes of social conditions affect telomere attrition. However, he also cautions “further ‘longitudinal’ studies, in which changes in telomeres of the same individuals over time, are needed to investigate the consequences of stress on telomere shortening and the subsequent effects on health and longevity.”

Co-author, Franz Schwarzenberger from the Department of Biomedical Sciences at the Vetmeduni Vienna, points out that their results are exciting because they suggest, “telomere length may be useful as a ‘biomarker’ that enables to assess an individual’s exposure to chronic social stress.”

The article “Social isolation shortens telomeres in African Grey Parrots (Psittacus erithacus erithacus)” by Aydinonat, D., Penn, D.J.*, Smith, S., Moodley, Y. Hoelzl, F., Knauer, F. & Schwarzenberger, F. was published online on 4 April 2014 in the open access journal PLOS ONE.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dustin Penn, PhD
Konrad Lorenz Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 4890915-823
dustin.penn@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: DNA Ethology Medicine Vetmeduni effects parrots senescence telomeres

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>