Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New location found for regulation of RNA fate

03.08.2009
Thousands of scientists and hundreds of software programmers studying the process by which RNA inside cells normally degrades may soon broaden their focus significantly.

That's because University of Wisconsin-Madison researchers have discovered that the RNA degradation, which, when improperly regulated can lead to cancer and other diseases, can be launched in an unexpected location.

"We've been seeing only half the picture," says Vladimir Spiegelman, lead author on the new study and associate professor of dermatology at the UW-Madison School of Medicine and Public Health.

The Wisconsin team also found that CRD-BP, a protein activated in colorectal and other cancers, can prevent RNA from degrading in the newly identified spot.

The finding may have broad implications for cancer research as well as biology in general.

"The finding is important for the proto-oncogenes, or precursor cancer genes, we study, but it may be even more important for the thousands of other genes and proteins that are regulated in a similar way," says Spiegelman.

The study appears in the July 31 issue of Molecular Cell.

Spiegelman and his team study proto-oncogenes and other potential "cancer-causers" normally found in cells, analyzing them as they are "converted" from DNA into RNA and ultimately active proteins that can lead to cancer.

It's the same multistep process all genes in a cell — including "cancer-preventers" such as tumor suppressors, anti-inflammatory factors and cell death promoters — go through.

Controls at each step usually keep the process working smoothly, but if a control fails at any number of places along the way, a cancer-promoting gene can tilt the delicately balanced scale toward malignancy.

In their previous work, the Wisconsin researchers found that regulation of some proto-oncogenes occurs after CRD-BP binds to messenger RNA (mRNA). During this intermediary step, mRNA is typically either degraded or goes on unharmed to the next step of translation. The Wisconsin team showed that the mRNA bound by CRD-BP was not degraded, and thus became an active protein — in this case, a full-fledged cancer-causing oncogene.

Until the Spiegelman group's latest study appeared, scientists assumed that the regulation of mRNA fate took place exclusively in an area of the RNA strand called the 3 prime untranslated region, where small regulatory RNAs called microRNAs (miRNA) bind and inhibit mRNAs.

But the Wisconsin team found degradation can also be initiated in an area on the mRNA strand called the coding region.

"This changes the paradigm," says Spiegelman. "Now we can examine this important activity in two places."

The researchers demonstrated that degradation occurs here using a human mRNA, and described the mechanism by which CRD-BP stabilizes the mRNA and prevents it from degrading and expressing more protein.

"This may be the first example of a negative regulator of an miRNA-dependent RNA-degrading mechanism," Spiegelman says.

The mechanism is relevant to many proteins, he says.

"Understanding this mechanism should also help us in studying cell signaling pathways related to pro-inflammatory and cell death factors that contribute to tumor development," he says.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: CRD-BP Dermatology RNA RNA fate cell death proto-oncogenes signaling pathway

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>