Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Llama Proteins Could Play a Vital Role in the War on Terror by Detecting World’s “Most Poisonous Poisons”

19.01.2010
Scientists at the Southwest Foundation for Biomedical Research (SFBR) in San Antonio have for the first time developed a highly sensitive means of detecting the seven types of botulinum neurotoxins (BoNTs) simultaneously. The finding may lead to improved techniques for testing water and food supplies should BoNTs be used as a bioterrorism weapon.
The BoNT-detecting substances are antibodies --proteins made by the body to fight diseases--found in llamas. BoNT are about 100 billion times more toxic than cyanide, and collectively, they are the only toxins in the federal Centers for Disease Control and Prevention (CDC) ‘category A’ list of potential bioterror threats alongside anthrax, Ebolavirus and other infectious agents.

The llama antibodies, called single domain antibodies (sdAb) or “nanobodies,” are molecularly flexible, unlike conventional antibodies. “As such, sdAb may allow biosensors to be regenerable and used over and over without loss of activity. Also, for some types of BoNT, conventional antibodies are not generally available and we are filling this biosecurity gap,” said Andrew Hayhurst, Ph.D., an SFBR virologist. Since some sdAb have been shown to have inhibitory activity and can block toxin function, they may play a role as part of a future anti-botulism treatment.

The new work, funded by the Defense Department’s Defense Threat Reduction Agency Medical Diagnostics Program, is described in the Jan. 21 issue of the journal PLoS ONE.

BoNTs are made by specific strains of the bacterium Clostridium, which are widely distributed in soils and aquatic sediments. Most cases of botulism are the result of improperly stored foods, which can encourage growth of Clostridia and production of toxin, which is then ingested. BoNTs are extremely potent and target the nervous system, resulting in paralysis that can be so severe as to require life support on a mechanical ventilator for weeks to months. Countermeasures to prevent and treat botulism, such as vaccines and therapeutics, are extremely limited. Consequently, the ability to detect these toxins in the environment is critically important.

“We not only aim to use the antibodies in BoNT detection tests, but also to understand how they bind and inhibit these fascinating molecules,” Hayhurst said. “We are also striving to improve our test by making it more sensitive such that one day it may be able to detect much smaller amount of toxins found in patients’ blood. Since BoNT also have therapeutic applications with carefully controlled preparations and dosing regimens, there is also an increasing need to monitor BoNT levels in these treatments.”

In the new study, a llama was immunized with harmless versions of seven types of BoNT, blood taken to provide antibody producing cells. Using bioengineering techniques, the antibody genes were cloned and the resulting antibodies were tested for their ability to detect BoNT in a selection of drinks, including milk. Hayhurst and his team are continuing to study the molecular interactions of the llama antibodies to find out why they are so specific and why some of them inhibit toxins. The laboratory capabilities of SFBR enabled this research to be performed according to all applicable federal guidelines of biosafety and biosecurity under the CDC Select Agent Program.

SFBR is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, SFBR partners with hundreds of researchers and institutions around the world, targeting advances in the fight against bioterror, cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases.

Joseph Carey | Newswise Science News
Further information:
http://www.sfbr.org

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>