Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LJI develops new approach to identify genes poised to respond in asthma patients

09.07.2014

Study searches active genetic neighborhoods for genes that can be targeted to treat asthmatic disease

In a study published yesterday in the scientific journal Nature Immunology, a group at the La Jolla Institute (LJI) led by Pandurangan Vijayanand, Ph.D. identify new genes that likely contribute to asthma, a disease that currently affects over 200 million people world wide.

An organism’s genetic material, also known as its genome, can be divided into small sections or ‘neighborhoods.’ Scientists can determine which genetic neighborhoods in a cell are active, or primed for gene production, by looking for a marker on the genome called an enhancer. An enhancer can increase the production of genes in its immediate neighborhood.

The goal of the published study is to find genes whose neighborhoods are active in diseased cells, but inactive in healthy cells. Genes that are in active neighborhoods in diseased cells are likely to contribute to disease, and can potentially be targeted with drug treatments.

In order to find genetic neighborhoods that are active in asthmatic disease, the scientists in Vijayanand’s group focus their experiments on memory cells, which develop abnormally in asthma patients. Memory cells are responsible for quickly responding to foreign substances called antigens that the host has been exposed to previously. Air passage inflammation, which characterizes asthma, is mediated by an overactive response to inhaled antigens by memory cells.

By applying his technique in small populations of abnormal memory cells, Vijayanand highlights 33 genetic neighborhoods that are highly active in diseased cells, but inactive in healthy cells, shifting the focus of asthma research to specific genes that are located in these neighborhoods.

Genome-wide association studies (GWAS) that are less precise, have previously identified 1,500 potential target regions associated with asthmatic disease. According to Vijayanand, these targets are too numerous to study individually, and as a result, the field has remained focused on just a few molecules for discovery of new asthma treatments.

Using their approach, Vijayanand’s team searched the 1,500 targets for those that have the greatest likelihood of contributing to asthmatic disease. “Our unbiased and hypothesis-free approach has revealed a staggering but manageable number of new molecules that could play a role in asthma, and thus are potentially novel therapeutic targets,” said Vijayanand.

Vijayanand and his team completed the study using different amounts of cells from the blood of healthy individuals and asthmatic patients. They did so in order to determine the smallest number of cells that were required for their technique, and found that it works with as little as 10,000 cells, which is significantly less than the millions of cells required to use other methods. Vijayanand envisions using this technique in situations where access to cells is limited, such as tumor biopsy for cancer.

The frequency of asthma is rising across the developed world as well as in several large developing countries. Treatment for asthma usually includes long-term nonspecific medication, as there is no cure at present.

Vijayanand says this study provides information that can be the starting point for many avenues of research and treatment. He says, “our study provides a rich and comprehensive resource that will be useful to the scientific community, enabling investigators to conduct their own detailed studies of the functional significance of the novel genes and enhancers that we have identified.”

The findings were published in a Nature Immunology paper entitled “Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.” The study was supported in part by the National Institutes of Health, under grant numbers R01 HL114093 and U19 AI100275. Researchers from other institutions also contributed to this study, including those from Southampton National Institute for Health Research and University of California, San Francisco.

ABOUT LA JOLLA INSTITUTE
Founded in 1988, the La Jolla Institute for Allergy and Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer, inflammatory and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 150 Ph.D.s and M.D.s. To learn more about the Institute's work, visit www.liai.org.

Daniel Moyer | Eurek Alert!
Further information:
http://www.liai.org/pages/LJI_Develops_New_Approach_to_Identify_Genes_in_Asthma_Patients

Further reports about: Allergy Immunology Jolla asthmatic disease diseases genes identify treatments

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>