Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LJI develops new approach to identify genes poised to respond in asthma patients

09.07.2014

Study searches active genetic neighborhoods for genes that can be targeted to treat asthmatic disease

In a study published yesterday in the scientific journal Nature Immunology, a group at the La Jolla Institute (LJI) led by Pandurangan Vijayanand, Ph.D. identify new genes that likely contribute to asthma, a disease that currently affects over 200 million people world wide.

An organism’s genetic material, also known as its genome, can be divided into small sections or ‘neighborhoods.’ Scientists can determine which genetic neighborhoods in a cell are active, or primed for gene production, by looking for a marker on the genome called an enhancer. An enhancer can increase the production of genes in its immediate neighborhood.

The goal of the published study is to find genes whose neighborhoods are active in diseased cells, but inactive in healthy cells. Genes that are in active neighborhoods in diseased cells are likely to contribute to disease, and can potentially be targeted with drug treatments.

In order to find genetic neighborhoods that are active in asthmatic disease, the scientists in Vijayanand’s group focus their experiments on memory cells, which develop abnormally in asthma patients. Memory cells are responsible for quickly responding to foreign substances called antigens that the host has been exposed to previously. Air passage inflammation, which characterizes asthma, is mediated by an overactive response to inhaled antigens by memory cells.

By applying his technique in small populations of abnormal memory cells, Vijayanand highlights 33 genetic neighborhoods that are highly active in diseased cells, but inactive in healthy cells, shifting the focus of asthma research to specific genes that are located in these neighborhoods.

Genome-wide association studies (GWAS) that are less precise, have previously identified 1,500 potential target regions associated with asthmatic disease. According to Vijayanand, these targets are too numerous to study individually, and as a result, the field has remained focused on just a few molecules for discovery of new asthma treatments.

Using their approach, Vijayanand’s team searched the 1,500 targets for those that have the greatest likelihood of contributing to asthmatic disease. “Our unbiased and hypothesis-free approach has revealed a staggering but manageable number of new molecules that could play a role in asthma, and thus are potentially novel therapeutic targets,” said Vijayanand.

Vijayanand and his team completed the study using different amounts of cells from the blood of healthy individuals and asthmatic patients. They did so in order to determine the smallest number of cells that were required for their technique, and found that it works with as little as 10,000 cells, which is significantly less than the millions of cells required to use other methods. Vijayanand envisions using this technique in situations where access to cells is limited, such as tumor biopsy for cancer.

The frequency of asthma is rising across the developed world as well as in several large developing countries. Treatment for asthma usually includes long-term nonspecific medication, as there is no cure at present.

Vijayanand says this study provides information that can be the starting point for many avenues of research and treatment. He says, “our study provides a rich and comprehensive resource that will be useful to the scientific community, enabling investigators to conduct their own detailed studies of the functional significance of the novel genes and enhancers that we have identified.”

The findings were published in a Nature Immunology paper entitled “Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.” The study was supported in part by the National Institutes of Health, under grant numbers R01 HL114093 and U19 AI100275. Researchers from other institutions also contributed to this study, including those from Southampton National Institute for Health Research and University of California, San Francisco.

ABOUT LA JOLLA INSTITUTE
Founded in 1988, the La Jolla Institute for Allergy and Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer, inflammatory and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 150 Ph.D.s and M.D.s. To learn more about the Institute's work, visit www.liai.org.

Daniel Moyer | Eurek Alert!
Further information:
http://www.liai.org/pages/LJI_Develops_New_Approach_to_Identify_Genes_in_Asthma_Patients

Further reports about: Allergy Immunology Jolla asthmatic disease diseases genes identify treatments

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>