Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizards in the Caribbean - how geography affects animal evolution

07.10.2014

A new and potentially more revealing way of studying how animal evolution is affected by the geography of climate has been designed by researchers at The University of Nottingham and Harvard University.

The research, published in the prestigious journal, The American Naturalist, uses a new approach to investigate how animals across (inter-specific) and within (intra-specific) species change in size along temperature gradients, shedding light on a 150-year-old evolutionary puzzle.


Bergmann’s rule — the tendency for warm-blooded animal body size to increase in colder environments — has long been controversial with debate around whether it applies to cold-blooded animals and how the rule applies within or among species.

Now, the team from Nottingham and Harvard has created a unified model to simultaneously study how inter-specific and intra-specific patterns of animal size change through space. The researchers focused on two groups of Anolis lizard, one on Cuba and the other on nearby Hispaniola, the island occupied by Haiti and the Dominican Republic. They found that the size of lizards decreases with elevation on both islands, but their model revealed that different ecological and evolutionary processes are responsible on each island.

Re-examining Bergmann's rule

Dr Adam Algar, from The University of Nottingham’s School of Geography, said: “Our new approach allows for the separation of intra- and inter-specific components of the relationships between animal traits and the environment. We found that the similar body size gradients in the lizards on both islands are constructed in very different ways. Even though lizards are smaller at high elevations on both islands, these body size patterns are underlain by very different processes. On Hispaniola, interspecific processes dominate, while on Cuba, intraspecific processes drive the pattern.” 

Martha Muñoz from Harvard University’s Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, said: “Our results suggest that restricting analyses to either the intra-specific or inter-specific levels can miss important patterns. Both must be considered. We believe our approach can help integrate a divided research programme by focusing on how the combined effects of intra- and inter-specific processes can enhance or erode trait-environment relationships at large bio-geographic scales”.

Extreme habitats

The researchers think the different geographies of Cuba and its neighbour Hispaniola may account for some of the varying patterns observed on each island. Hispaniola’s highland areas and their associated climatic gradients are far more extensive than on Cuba. Hispaniola has nearly 8,000 km² of habitat above 1,000m whereas Cuba has only 271 km² of highland habitat.

The greater extent of climatically extreme habitats suggests a greater potential for reduced dispersal of lizards and isolation by environment along tropical elevational gradients in Hispaniola. Conversely, climatically extreme habitat is more rare on Cuba so higher gene flow across elevations may limit the role of interspecific processes on this island.

The full paper, 'Untangling intra- and interspecific effects on body size clines reveals divergent processes structuring convergent patterns in Anolis lizards', is available here.       

Story credits

More information is available from Dr Adam Algar, School of Geography, The University of Nottingham on +44 (0)115 951 5459 adam.algar@nottingham.ac.uk 

Emma Rayner - Media Relations Manager

Email: emma.rayner@nottingham.ac.uk
Phone: +44 (0)115 951 5793
Location: University Park

Emma Rayner | Eurek Alert!

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>