Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizards change their diet to avoid predators

04.12.2009
A scientist from the University of Salamanca and another from Yale University have shown that the presence of predators affects the behaviour of Acanthodactylus beershebensis, a lizard species from the Negev Desert in the Near East. According to the study, these reptiles move less and catch less mobile and different prey if they are under pressure from predators.

Many theoretical models had predicted this result, but until now there had been very few experimental trials and none in the case of saurians (reptiles). This experiment by Dror Hawlena, a researcher at Yale University in the United States, and Valentín Pérez-Mellado, a researcher at the University of Salamanca, has shown that certain animals, such as the insectivore lizard Acanthodactylus beershebensis, can change their behaviour and diet to avoid being eaten.

"When there is greater pressure from predators, the individuals tend to move less and catch more mobile prey from somewhat different groups. The lizards' diet and food-seeking behaviour changed significantly when we experimentally increased the predation pressure on them", Pérez-Mellado tells SINC.

The study, published recently in the journal Oecologia, shows that reptiles threatened by predators become less selective and eat a more diverse range of foods, according to Pérez-Mellado, who was in charge of analysing their diet in Spain. The field work done over the summer months in 2000 and 2001 in the Negev Desert in Israel was carried out by Hawlena.

The scientists studied the species' diet data (trophic ecology) in two different situations – with and without predators. The Spanish researcher analysed the contents of 327 faecal pellets taken from 291 different lizards in order to reconstruct their diet. Ants were the prey most commonly consumed by the lizards, both by those at risk (69.32%) and the controls (67.12%), followed by insects such as termites (19.14% and 19.17% respectively). The difference could be clearly seen in the consumption of seeds, because the lizards hardly consumed these (0.52%) when they were under threat from predators.

An ingenious experiment in the desert

In order to reach these conclusions, Hawlena, who is from the University of the Negev in Israel, designed an experiment that made it possible to prove that the presence of predators affects the behaviour and ecology of this endemic species. "A series of artificial perches were placed in a desert site, which made it easier for shrikes (small birds of prey that catch lizards) to make use of the area, since they could detect the lizards from raised perches such as trees and bushes. These perches were not placed in a similar site nearby, which was used as the control site", explains Pérez-Mellado.

References:

Hawlena, Dror; Pérez-Mellado, Valentín. "Change your diet or die: predator-induced shifts in insectivorous lizard feeding ecology" Oecologia 161(2): 411-419 agosto de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>