Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizard moms may prepare their babies for a stressful world

20.04.2012
Stressed out lizard moms tend to give their developing embryos short shrift, but the hardship may ultimately be a good thing for the babies once they're born, according to a study published in the journal Physiological and Biochemical Zoology.

Stress changes the way animals allocate energy. During predator attacks or food shortages, hormones are released that help the body to access stored energy. But for pregnant females there's a potential trade-off. Stress hormones could rob precious energy from developing embryos, leading to offspring that aren't as healthy.


Skink mothers under stress allocate more energy to self-preservation at the cost of their developing offspring. But the rough start may actually be a benefit to the babies once they're born. Credit: Erik Wapstra

A research team led by Erik Wapstra of the University of Tasmania, Australia, tested the effects of stress on southern grass skinks, which, unlike many lizards, give birth to live young rather than laying eggs.

In the lab, the researchers recreated the physiology of a stressful situation by artificially raising levels of the stress hormone corticosterone in pregnant skins. Other skinks had their food intake limited, recreating the stress of a food shortage. The team then measured the health of the stressed mothers and their eventual offspring, and compared their state to mothers and offspring that weren't under stress.

The study found that stressed moms gave birth to smaller offspring that grew more slowly than those born to low-stress mothers. Stressed mothers themselves were found to be in better physical shape after giving birth than non-stressed mothers. That's a signal that when stressors are present, mothers tend to allocate energy to self-preservation first.

Despite seemingly getting the short end of the stick, the news wasn't all bad for offspring of stressed mothers. "We found that small offspring had larger fat reserves relative to body size…, which may enhance offspring survival in a stressful post-natal environment," the researchers write. Previous studies have also shown that smaller juvenile lizards often do better when predator density is high or when food availability is low.

It appears that a mother's stress-induced selfishness may actually help to pre-adapt her babies for a stressful world.

Keisuke Itonaga, Susan M. Jones, and Erik Wapstra, "Do Gravid Females Become Selfish? Female Allocation of Energy during Gestation." Physiological and Biochemical Zoology 85:3 (May/June 2012).

Physiological and Biochemical Zoology primarily publishes original research papers in animal physiology and biochemistry with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary or comparative physiology is particularly encouraged.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>