Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Living Microprocessor Tunes in to Feedback

What keeps the machinery for chopping functional pieces out of certain long RNA strands from cutting up the wrong kinds of RNA?

MicroRNAs (miRNAs) – tiny strands of non-protein-coding RNAs – start off as long strands of precursor miRNAs. These long strands get chopped up by a special kind of machinery, the “Microprocessor” complex, to transform them into their shorter functional form. The resulting miRNAs bind to messenger RNA (mRNAs) molecules, inhibiting their protein production capacity and thus regulating the levels of hundreds of different proteins.

But the Microprocessor complex can also cut up other forms of RNA, such as mRNAs, which sometimes generate a transient structure that resembles the target site of miRNAs. Cleaving the wrong RNAs could prove disastrous for the organism.

In a paper recently published in Nature Structural and Molecular Biology, Dr. Eran Hornstein, Prof. Naama Barkai and former Ph.D. students Drs. Omer Barad and Mati Mann of the Molecular Genetics Department focus on understanding how the Microprocessor machinery balances the interplay between efficiency and specificity in the production of miRNAs. “On the one hand, it should not be overly efficient, as this may come at the cost of also cleaving unwanted nonspecific RNA substrates. On the other hand, it should not be too ‘picky’ because exaggerated specificity comes with the risk of not sufficiently processing genuine miRNAs,” says Hornstein.
In an interdisciplinary project, the scientists used mathematical modeling to characterize the Microprocessor system and then tested their theories in cells. They predicted that the balance between efficiency and specificity would be maintained via a feedback loop in which the Microprocessor detects the amount of precursor miRNA available in the cell and alters its own production accordingly.

Checking this premise in mouse and human tissue, the researchers were able to show that the Microprocessor is indeed attuned to levels of precursor miRNA, upping its own production if the cell is inundated with precursor miRNA, or halting production in response to a decrease in the flow of precursors. This is achieved by the digestion of Dgcr8 mRNA, which structurally mimics miRNA. By keeping levels in line with precursor miRNAs, the Microprocessor thus reduces its chances of chopping off-target RNAs.
Since small RNAs are produced synthetically as possible new therapies for a number of diseases, this research may direct efforts to efficiently produce such therapies in the future. In addition, many other biological systems need to balance efficiency with specificity, and the team’s findings suggest that many may do so in a similar way.

Dr. Eran Hornstein’s research is supported by Dr. Sidney Brenner and Friends; the Carolito Stiftung; the Nella and Leon Benoziyo Center for Neurological Diseases; the Y. Leon Benoziyo Institute for Molecular Medicine; the Nathan, Shirley, Philip and Charlene Vener New Scientist Fund; the estate of Fannie Sherr; the estate of Lola Asseof; Maria Halphen, France; the Julius and Ray Charlestein Foundation; the Legacy Heritage Fund; the Kekst Family Institute for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the Helen and Martin Kimmel Institute for Stem Cell Research; the Crown Human Genome Center; the Celia Benattar Memorial Fund for Juvenile Diabetes; the Fraida Foundation; and the Wolfson Family Charitable Trust. Dr. Hornstein is the incumbent of the Helen and Milton A. Kimmelman Career Development Chair.

Prof. Naama Barkai’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; Lorna Greenberg Scherzer, Canada; the Carolito Stiftung; the European Research Council; the estate of Hilda Jacoby-Schaerf; and the estate of John Hunter. Prof. Barkai is the incumbent of the Lorna Greenberg Scherzer Professorial Chair.

Yivsam Azgad | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>