Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How living cells solved a needle in a haystack problem to produce electrical signals

25.11.2013
Filtered from a vast sodium sea, more than 1 million calcium ions per second gush through our cells' pores to generate charges

Scientists have figured out how calcium channels – the infinitesimal cell membrane pores that generate electrical signals by gating a charged-particle influx – have solved a "needle in a haystack" problem.

The solution to the longstanding riddle is reported in the Nov. 24 advanced online edition of Nature by University of Washington and Howard Hughes Medical Institute investigators. Dr. Ning Zheng, a noted X-ray crystallographer, and Dr. William Catterall, a pioneer in ion channel research, were the senior researchers, and Dr. Lin Tang and Dr. Tamer Gamal El-Din headed the project.

The cardiac muscle cells of the heart face an extracellular fluid where the concentration of sodium ions is 70 times greater than that of calcium ions. Even though calcium and sodium ions are nearly identical in diameter, calcium channels preferentially pass the far-less-abundant calcium ions through them with astounding speed. Calcium ions gush through the voltage-gated calcium channels of cells at the rate of more than one million ions per second.

"How calcium channels are able to solve this fundamental biophysical problem has been a longstanding question in cell physiology," Catterall said. The answer is important to both science and medicine.

The speed and accuracy of these channels in selectively filtering the calcium ions is crucial to many biological activities in which cells cooperate, Catterall explained. Muscle contractions, including the rhythm of the heart, hormone secretion and nerve and brain impulses all depend on these particular channels' ability to pass calcium through and keep sodium at bay. Calcium channels are also the target of many medications for epilepsy, high blood pressure, heart disease and other serious conditions.

Sodium channels and calcium channels in animals both likely evolved from a single ancestral type of sodium channel in bacterial cells, and kept similar structures and functions, the researchers noted.

Catterall said the research team introduced just three mutations into the 274 amino acid residues of a bacterial sodium channels to create calcium channels.

"We thought if we placed the right residues in the right places, the structure should be accommodating and we could change the channel from selective for sodium to selective for calcium,' Catterall said. "Luckily it worked. We rebuilt the channel with the full physiological properties of calcium channels."

They then conducted electrophysiological and X-ray crystallography analyses to try to see what the channel looked like and how it operated. The beamline staff at the U.S. Department of Energy's Advanced Light Source, at the Lawrence Berkeley National Laboratory in California, assisted with this data collection.

The team was able to determine how the filter that selected for calcium was constructed, and to report on the pathway calcium ions likely follow as they pass through the pore.

The calcium ions, the researchers said, transition through three binding sites. The first site, in an outer vestibule near the mouth of the pore, is critical in recognizing and selectively admitting calcium ions into the channel and keeping out sodium. This role is supported by the second site inside the pore. This site is single occupancy. The calcium ion there is quickly knocked out by repulsive interactions with another calcium ion approaching from outside the cell, like pin balls ricocheting, even though it would like to bind there.

The third site, with a lower binding affinity, allows the calcium ions to move into the cell.

The flow of ions is accelerated by having these three binding sites in sequence. The flow goes only in one direction because the concentration of calcium ions outside the cell is much larger than their concentration inside the cell. At any given time, the ions also have to be in particular, mutually exclusive positions – at site 1 and 3 but not site 2, or at site 2 and in the outer vestibule, but not in sites 1 and 3.

"They are moving fast because they are bumping each other," Catterall said. "The movement of millions of molecules per second generates 15 pico amps – a miniscule electrical current, only one trillionth the size of the current in an electric wall socket, but enough to drive a cell signal."

"The details of the structure told us exactly how calcium ions go through this particular type of cell membrane pore, and why sodium ions don't," Zheng added. "We were surprised and pleased that this seems to resolve in a clear way an important mechanism that has been unclear for a long time."

The study was conducted on a bacterial ion channel because mammalian ion channels would have been too big and complicated to be used as a model to obtain structural data, according to Zheng and Catterall. The approach the team took, they said, was a shortcut to obtain the information needed. The new understanding is likely to be applicable to such diverse scientific fields as the neurosciences, endocrinology, cardiovascular physiology, and cell biology.

"This information might also be important in the development of new drugs that act upon calcium channels," Catterall said. "Understanding the structure and function of the calcium channel might help researchers more accurately target drugs to bind exact areas of the channel to perform their therapeutic actions. These new compounds may work better with fewer side effects. For example, researchers are hoping to design safer medications for chronic pain."

The research published in the Nature paper was supported by grants from the National Institute of Neurological Disorders and Stroke (R01NS015851), the National Heart, Lung and Blood Institute (R01HL112808), a National Research Service Award (T32GM00828) and funding from the Howard Hughes Medical Institute.

Other UW Department of Pharmacology researchers on the project were Jian Payandeh, Gilbert Q. Martinez, Teresa M. Heard and Todd Scheuer.

Leila Gray | EurekAlert!
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>