Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livestock Risks from Wisconsin Wolves Localized, Predictable

03.06.2011
It’s an issue that crops up wherever humans and big predators — wolves, bears, lions — coexist.

“It’s just hard to live alongside large carnivores. They damage crops, they kill livestock and pets, they threaten people’s safety,” says University of Wisconsin-Madison professor Adrian Treves. And the sheer presence of a wolf nearby has typically been enough to make farmers fear for their animals, he adds. “Wherever there were carnivores, people thought there was risk.”

But Red Riding Hood and the Three Little Pigs notwithstanding, not all wolves are big and bad. Even as Wisconsin’s wolf population grows, intensifying the potential for conflicts with people, Treves’ research is revealing that one of the most visible types of conflict — attacks on livestock — is highly localized and may be predictable.

Treves, head of the Carnivore Coexistence Laboratory in the UW-Madison Nelson Institute for Environmental Studies, works in partnership with the Wisconsin Department of Natural Resources to understand and mediate human-carnivore conflicts with an eye toward reducing the threat to both people and animals.

When problems arise, Treves says, “people traditionally respond by retaliating, either by clearing wildlife habitat or by killing the carnivores.”

It’s an approach that simply isn’t sustainable, he says, noting that top carnivores are linchpin species in many ecosystems and among the most endangered species on the planet. “How do you balance people’s need for safety and their livelihoods — livestock and crops — how do you balance that human need with the global imperative to conserve nature?”

Their research on the topic has now yielded a risk map of wolf attacks on livestock in Wisconsin, which identifies areas of high and low risk throughout the state. The study, co-authored with Adrian Wydeven and Jane Wiedenhoeft of the Wisconsin DNR and Kerry Martin of UW-Madison, appears in the June issue of the journal BioScience.

Risk mapping is already used in a wide range of settings, from police activity to outbreaks of infectious disease, as a way to mobilize and manage resources. It’s a very common-sense approach, Treves says, based on identifying characteristics that distinguish affected sites from neighboring unaffected sites.

“If we can isolate the factors that make them different, we should be able to predict where those attacks will happen in the future and we can target our prevention to the highest-risk areas,” he says.

Their analysis, using 133 documented livestock attacks between 1999 and 2006, highlighted three variables that predicted higher risk of wolf attacks: higher percentage of pasture, grassland or hayfield; closer proximity to the nearest wolf pack; and greater distance from forest.

Of the parts of Wisconsin within 100 kilometers of a wolf pack (most of the state, excluding the southern and southeastern-most regions), only one-third of the study area was found to be at risk of wolf attacks on livestock. The highest-risk areas comprise just 10.5 percent, concentrated in the northwest and a few pockets near Lake Superior.

The researchers also verified their model using data from 2007-09 and found that their risk map correctly predicted the vast majority (88 percent) of those incidents.

Treves says it’s a good start to help farmers and resource managers target prevention efforts on those high-risk hotspots, distribute limited resources as efficiently and effectively as possible and, hopefully, reduce livestock attacks.

“Prediction promotes prevention,” he says. “Every single wolf pack in Wisconsin has access to people or pets or livestock,” but with only a handful implicated in attacks each year, “the majority of the wolf population is not causing problems.”

CONTACT: Adrian Treves, atreves@wisc.edu, 608-890-1450

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>