Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver parasite lacks key genes for fatty acid synthesis: Genome sequencing of Clonorchis sinensis

24.10.2011
The human liver fluke Clonorchis sinensis affects more than 35 million people in South East Asia and 15 million in China. Infection by this parasite causes clonorchiasis.

Repeated or chronic infection can lead to serious disease of the liver, gall bladder or bile ducts, including the frequently fatal bile duct cancer - cholangiocarcinoma (CCA). The complete genome sequence the genome of C. sinensis, published in BioMed Central's open access journal Genome Biology, has provided insight into the biochemical pathways available to the fluke and shows that they are lacking enzymes required for fatty acid biosynthesis.

C. sinensis has a complex lifestyle. The eggs float in fresh water until eaten by snail. Once inside the snail they develop and grow into a free swimming stage. These burrow out of the snail and into a fish where the coat themselves in an acid resistant covering. Humans and other mammals are infected by the parasite by eating uncooked fish. Once in the small intestine the flukes migrate to the bile ducts in the liver where they live out their adult lives.

Over 16,250 genes were found within the 516Mb genome (the human genome has about 23,000 genes over 3Gb of DNA). Genes were found corresponding to genes for energy metabolism, both aerobic (used by the juveniles) and anaerobic (used by the adults). While the genes coding for proteins needed for fatty acid metabolism were all present, key enzymes were missing from fatty acid synthesis.

Prof Xinbing Yu, who led the team which performed this work, explained that, "Two other liver flukes S.Japonicum and S. Mansoni are also missing these enzymes. This means that liver flukes evolved to use their host's fatty acids before the species separated." Prof Xinbing concludes, "Genomic information is not only able to help us understand evolution but the sequence of C. sinensis is helping us understand liver fluke biology. This in turn will help find new ways of controlling diseases caused by this parasite or provide new targets for making a vaccine."

Notes to Editors

1. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis
Xiaoyun Wang, Wenjun Chen, Yan Huang, Jiufeng Sun, Jingtao Men, Hailiang Liu, Fang Luo, Lei Guo, Xiaoli Lv, Chuanhuan Deng, Chenhui Zhou, Yongxiu Fan, Xuerong Li, Lisi Huang, Yue Hu, Chi Liang, Xuchu Hu, Jin Xu, Xinbing Yu

Genome Biology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Genome Biology is an Open Access, peer reviewed journal that publishes research articles, new methods and software tools, in addition to reviews and opinions, from the full spectrum of biology, including molecular, cellular, organism or population biology studied from a genomic perspective, as well as sequence analysis, bioinformatics, proteomics, comparative biology and evolution.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>