Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver cells created from patients' skin cells

26.08.2010
Research paves way for new liver disease research and possibly cell-based therapy

By creating diseased liver cells from a small sample of human skin, scientists have for the first time shown that stem cells can be used to model a diverse range of inherited disorders. The University of Cambridge researchers' findings, which will hopefully lead to new treatments for those suffering from liver diseases, were published today in The Journal of Clinical Investigation.

Because liver cells (hepatocytes) cannot be grown in the laboratory, researching liver disorders is extremely difficult. However, today's new research, which was funded by the Wellcome Trust and the Medical Research Council (MRC), demonstrates how to create diseased liver-like cells from patients suffering from a variety of liver disorders.

By replicating the organ's cells, researchers can not only investigate exactly what is happening in a diseased cell, they can also test the effectiveness of new therapies to treat these conditions. It is hoped that their discovery will lead to tailored treatments for specific individuals and eventually cell-based therapy - when cells from patients with genetic diseases are 'cured' and transplanted back. Additionally, as the process could be used to model cells from other parts of the body, their findings could have implications for conditions affecting other organs.

Dr Ludovic Vallier of the MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, principal investigator of the research, said: "Our work represents an important step towards delivering the clinical promises of stem cells. However, more work remains to be done and our group is dedicated to achieving this ultimate goal by increasing the knowledge necessary for the development of new therapies."

In the UK, liver disease is the fifth largest cause of death after cardiovascular, cancer, stroke, and respiratory diseases. Over the past 30 years mortality from liver disease in young and middle-aged people has increased over six times, with the number of individuals dying from the disease increasing at a rate of 8-10 per cent every year.

By 2012, the UK is expected to have the highest liver disease death rates in Europe and, without action to tackle the disease, it could overtake stroke and coronary heart disease as the leading cause of death within the next 10-20 years. In the United States, it accounts for approximately 25,000 deaths a year.

For their research, the scientists took skin biopsies from seven patients who suffered from a variety of inherited liver diseases and three healthy individuals (the control group). They then reprogrammed cells from the skin samples back into stem cells. These stem cells were then used to generate liver cells which mimicked a broad range of liver diseases - the first time patient-specific liver diseases have been modelled using stem cells - and to create 'healthy' liver cells from the control group. Importantly, the three diseases the scientists modelled covered a diverse range of pathological mechanisms, thereby demonstrating the potential application of their research on a wide variety of disorders.

Dr Tamir Rashid of the Laboratory for Regenerative Medicine, University of Cambridge, lead author of the paper, said: "We know that given the shortage of donor liver organs alternative strategies must urgently be sought. Our study improves the possibility that such alternatives will be found - either using new drugs or a cell-based therapeutic approach."

Professor Mark Thursz, a specialist in liver disease and Professor of Hepatology at Imperial College (who was not affiliated with the study), commented on the importance of the research: "Liver disease is the fifth most common cause of mortality in many developed countries and unlike the other leading causes of death, the rate of liver related mortality is increasing.

"The development of patient specific liver cell lines from stem cells is a significant advance in the battle against liver diseases. This technology holds promise in the short term by providing new tools to explore the biology of liver diseases and in the long term as a potential source of liver cells for patients with liver failure."

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'Modeling inherited metabolic disorders of the liver using human induced pluipotent stem cells' will be published in the 25 August 2010 edition of The Journal of Clinical Investigation. .

2. The Wellcome Trust is a global charity dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

3. For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century www.mrc.ac.uk.

4. Images are available upon request.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>