Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First live targeting of tumors with RNA-based technology

30.11.2009
Finding and treating a tumor without disturbing normal tissue presents challenges – sometimes the most effective therapies can be invasive and harsh.

Researchers at Duke University Medical Center have devised a way they might deliver the right therapy directly to tumors using special molecules, called aptamers, which specifically bind to living tumor tissue.

They screened a large pool of aptamers in a rodent with liver cancer until they found the best molecule to bind to a tumor protein.

"We are already exploring attaching chemicals to the aptamers, so the aptamer molecules could deliver tumor-killing agents where they are needed, which is the next phase of our research," said senior author Bryan Clary, M.D., chief of the Division of Hepatopancreatobiliary and Oncologic Surgery.

The study was published in Nature Chemical Biology online on Nov. 29.

Aptamers are small pieces of RNA that bind to a specific target molecule, usually a protein. They offer ease of use because they can be easily regenerated and modified and therefore have increased stability over some other agents, such as protein-based antibodies. Notably, they have a very low chance of immune-system interference, making them great candidates for tumor diagnosis and therapy.

"Most importantly, it's not necessary to have detailed knowledge of protein changes in the disease before the selection process," said lead author Jing Mi, M.D., Ph.D., assistant professor in the Duke Department of Surgery. "This greatly simplifies the process of molecular probe development. The selected aptamers can be used to discover proteins not previously linked with the disease in question, which could speed up the search for effective therapies."

The researchers used a large pool of RNA strands and applied them to a rodent with a liver tumor, the type of metastatic tumor that often results from a colon cancer tumor.

"We hypothesized that the RNA molecules that bind to normal cellular elements would be filtered out, and this happened," said Clary, who treats colon cancer patients. "In this way, we found the RNA molecules that went specifically to the tumor."

The researchers removed the tumor, extracted the specific RNA in the tumor, amplified these pieces of RNA to create a greater amount, and reinjected the molecules to learn which bound most tightly to the tumor. They repeated this process 14 times to find a good candidate.

The team found a tumor-targeting RNA aptamer that specifically bound to RNA helicase p68, a nuclear protein produced in colorectal tumors.

"This aptamer not only binds to p68 protein in cell culture, but also preferentially binds to cancer deposits in a living animal," Mi said. "The nice thing about this aptamer approach is that it could be used to discover the molecular signatures of many other diseases."

Clary said the process could be repeated with different types of tumors. For example, a scientist might take a breast cancer line and grow it in the lung as a metastasis model and then perform in vivo selection to identify RNAs specifically binding to the lung tumor.

"This would work, theoretically," Clary said. "The idea of selecting molecules targeting a tumor growing in a body that results in a useful reagent for biologic exploration and therapy delivery in tumors is exciting."

In fact, based on earlier research done with proteins called peptides, the researchers expected that the aptamer process would find proteins in the blood vessels feeding the liver tumor, but instead they found the p68 target inside of tumor cells. "We think this is a valuable target because delivering to the sites inside of cells may make it easier to treat an entire tumor with drugs that are 'escorted' by the aptamer," Clary said.

He said that repeating the selection and amplification process with the same liver tumor could lead to development of other aptamers that bind well to proteins in tumor tissue besides p68. The team focused its initial efforts on developing an escort for p68 because this protein was known to be overexpressed in colon cancer.

Other authors include Yingmiao Liu, Johannes Urban and Bruce A. Sullenger of the Duke Department of Surgery, Zahid N. Rabbani of the Duke Department of Radiation Oncology, and Zhongguang Yang of the Moses Cone Memorial Hospital Department of Internal Medicine.

The study was funded by the Elsa U. Pardee Foundation, an American Cancer Society pilot award, and National Institutes of Health grants.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>