Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going live – immune cell activation in multiple sclerosis

23.05.2013
New indicator molecules visualise the activation of auto-aggressive T cells in the body as never before

Biological processes are generally based on events at the molecular and cellular level. To understand what happens in the course of infections, diseases or normal bodily functions, scientists would need to examine individual cells and their activity directly in the tissue.


Using a calcium sensor shows that the calcium concentration in T cells (green) changes when it interacts with dendritic cells (red) [top]. The activation of the T cell (red) can be illustrated by the migration of the NFAT signal protein (green) from the cell plasma to the cell nucleus [bottom].
© MPI of Neurobiology

The development of new microscopes and fluorescent dyes in recent years has brought this scientific dream tantalisingly close. Scientists from the Max Planck Institute of Neurobiology in Martinsried have now presented not one, but two studies introducing new indicator molecules which can visualise the activation of T cells. Their findings provide new insight into the role of these cells in the autoimmune disease multiple sclerosis (MS). The new indicators are set to be an important tool in the study of other immune reactions as well.

Inflammation is the body’s defence response to a potentially harmful stimulus. The purpose of an inflammation is to fight and remove the stimulus – whether it be disease-causing pathogens or tissue. As an inflammation progresses, significant steps that occur thus include the recruitment of immune cells, the interactions of these cells in the affected tissue and the resulting activation pattern of the immune cells. The more scientists understand about these steps, the better they can develop more effective drugs and treatments to support them. This is particularly true for diseases like multiple sclerosis. In this autoimmune disorder cells from the body’s immune system penetrate into the central nervous system where they cause massive damage in the course of an inflammation.

In order to truly understand the cellular processes involved in MS, scientists ideally need to study them in real time at the exact location where they take place – directly in the affected tissue. In recent years, new microscopic techniques and fluorescent dyes have been developed to make this possible for the first time. These coloured indicators make individual cells, their components or certain cell processes visible under the microscope. For example, scientists from the Max Planck Institute of Neurobiology have developed a genetic calcium indicator, TN-XXL, which the cells themselves form, and which highlights the activity of individual nerve cells reliably and for an unlimited time. However, the gene for the indicator was not expressed by immune cells. That is why it was previously impossible to track where in the body and when a contact between immune cells and other cells led to the immune cell’s activation.

Now the Martinsried-based neuroimmunologists report two major advances in this field simultaneously. One is their development of a new indicator which visualises the activation of T cells. These cells, which are important components of the immune system, detect and fight pathogens or substances classified as foreign (antigens). Multiple sclerosis, for example, is one of the diseases in which T cells play an important role: here, however, they detect and attack the body’s brain tissue. If a T cell detects "its own" antigen, the NFAT signal protein migrates from the cell plasma to the nucleus of the T cell. "This movement of the NFAT shows us that the cell has been activated, in other words it has been ‘armed’," explains Marija Pesic, lead author of the study published in the Journal of Clinical Investigation. "We took advantage of this to bind the fluorescent dye called GFP to the NFAT, thereby visualising the activation of these cells." The scientists are thus now able to conclusively show in the organism whether an antigen leads to the activation of a T cell. The new indicator is an important new tool for researching autoimmune diseases and also for studying immune cells during their development, during infections or in the course of tumour reactions.

In parallel to these studies, the neuroimmunologists in Martinsried developed a slightly different, complementary method. They modified the calcium indicator TN-XXL to enable, for the first time, T cell activation patterns to be observed live under the microscope, even while the cells are wandering about the body. When a T cell detects an antigen, a rapid rise in the calcium concentration within the cell ensues. The TN-XXL makes this alteration in the calcium level apparent by changing colour, giving the scientists a direct view of when and where the T cells are being activated.

"This method has enabled us to demonstrate that these cells really can be activated in the brain," says a pleased Marsilius Mues, lead author of the study which has just been published in Nature Medicine. Until now, scientists had only suspected this to be the case. In the animal model of multiple sclerosis, scientists are now able to track not only the migration of the T cells, but also their activation pattern in the course of the disease. Initial investigations have already shown, besides the expected activation by antigen detection, that numerous fluctuations in calcium levels also take place which bear no relation to an antigen. "These fluctuations can tell us something about how potent the T cell is, how strong the antigen is, or it may have something to do with the environment," speculates Marsilius Mues. These observations could indicate new research approaches for drugs – or they could even show whether a drug actually has an effect on T cell activation.

Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Prof. Dr. Hartmut Wekerle
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3550
Fax: +49 89 8578-3790
Email: hwekerle@­neuro.mpg.de
Original publications
Marija Pesic, Ingo Bartholomäus, Nikolaos I. Kyratsous, Vigo Heissmeyer, Hartmut Wekerle, Naoto Kawakami
2-photon imaging of phagocyte-mediated T cell activation in the CNS
The Journal of Clinical Investigation, February 1, 2013
Marsilius Mues, Ingo Bartholomäus, Thomas Thestrup, Oliver Griesbeck, Hartmut Wekerle, Naoto Kawakami, Gurumoorthy Krishnamoorthy
Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator

Nature Medicine, May 12, 2013

Dr. Stefanie Merker | Max-Planck-Institute
Further information:
http://www.mpg.de/7261098/immune-cell-activation-MS?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>