Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium profoundly prevents brain damage associated with Parkinson's disease

24.06.2011
Buck Institute research in mice moves into preclinical stage; working toward human trials

Lithium profoundly prevents the aggregation of toxic proteins and cell loss associated with Parkinson's disease (PD) in a mouse model of the condition.

Preclinical research is now underway at the Buck Institute for Research on Aging to determine correct dosages for a drug that continues to be the gold standard for the treatment of bipolar disorder. The Buck is currently working toward initiating a Phase IIa clinical studies of lithium in humans in conjunction with standard PD drug therapy. The research appears in the June 24 online edition of the Journal of Neuroscience Research.

"This is the first time lithium has been tested in an animal model of PD," said lead author and Buck Professor Julie Andersen, PhD. "The fact that lithium's safety profile in humans is well understood greatly reduces trial risk and lowers a significant hurdle to getting it into the clinic."

... more about:
»Alzheimer »Lithium »Parkinson »brain aging

According to Andersen, lithium has recently been suggested to be neuroprotective in relation to several neurodegenerative conditions including Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis and has been touted for its anti-aging properties in simple animals. "We fed our mice levels of lithium that were at the low end of the therapeutic range," said Andersen. "The possibility that lithium could be effective in PD patients at subclinical levels is exciting, because it would avoid many side effects associated at the higher dose range." Overuse of lithium has been linked to hyperthyroidism and kidney toxicity.

PD is a progressive, incurable neurodegenerative disorder that affects 1 million Americans and results in tremor, slowness of movement and rigidity. It is the second most common neurodegenerative disease after Alzheimer's. Between 50,000 and 60,000 new cases are diagnosed each year. Age is the largest risk factor for the PD. Onset usually begins between the ages of 45 and 70 years.

Andersen's research focuses on lithium as a potential treatment for PD as well as its efficacy in combination with drugs currently used to control the symptoms of the disease. An internet search reveals stories from PD patients who are using lithium "off label" as part of their treatment regime; others report benefits from low dose lithium salts which are available as a supplement in some health food stores. "This finding gives us an opportunity to explore lithium as a recognized therapeutic for PD, in doses that are safe and effective" said Andersen.

Contributors to the work:

Other Buck Institute researchers involved in the study include Yong-Hwan Kim, Anand Rane and Stephanie Lussier. The research was supported by a grant from the National Institutes of Health.

Citation:

Lithium protects against oxidative stress-mediated cell death in alpha-synuclein over-expressing in vitro and in vivo models of Parkinson's disease. JNR: 852471-744204

About the Buck Institute for Research on Aging:

The Buck Institute is the first freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual's life. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer's and Parkinson's disease, cancer, cardiovascular disease and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For more information: www.thebuck.org.

Kris Rebillot | EurekAlert!
Further information:
http://www.buckinstitute.org

Further reports about: Alzheimer Lithium Parkinson brain aging

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>