Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium profoundly prevents brain damage associated with Parkinson's disease

24.06.2011
Buck Institute research in mice moves into preclinical stage; working toward human trials

Lithium profoundly prevents the aggregation of toxic proteins and cell loss associated with Parkinson's disease (PD) in a mouse model of the condition.

Preclinical research is now underway at the Buck Institute for Research on Aging to determine correct dosages for a drug that continues to be the gold standard for the treatment of bipolar disorder. The Buck is currently working toward initiating a Phase IIa clinical studies of lithium in humans in conjunction with standard PD drug therapy. The research appears in the June 24 online edition of the Journal of Neuroscience Research.

"This is the first time lithium has been tested in an animal model of PD," said lead author and Buck Professor Julie Andersen, PhD. "The fact that lithium's safety profile in humans is well understood greatly reduces trial risk and lowers a significant hurdle to getting it into the clinic."

... more about:
»Alzheimer »Lithium »Parkinson »brain aging

According to Andersen, lithium has recently been suggested to be neuroprotective in relation to several neurodegenerative conditions including Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis and has been touted for its anti-aging properties in simple animals. "We fed our mice levels of lithium that were at the low end of the therapeutic range," said Andersen. "The possibility that lithium could be effective in PD patients at subclinical levels is exciting, because it would avoid many side effects associated at the higher dose range." Overuse of lithium has been linked to hyperthyroidism and kidney toxicity.

PD is a progressive, incurable neurodegenerative disorder that affects 1 million Americans and results in tremor, slowness of movement and rigidity. It is the second most common neurodegenerative disease after Alzheimer's. Between 50,000 and 60,000 new cases are diagnosed each year. Age is the largest risk factor for the PD. Onset usually begins between the ages of 45 and 70 years.

Andersen's research focuses on lithium as a potential treatment for PD as well as its efficacy in combination with drugs currently used to control the symptoms of the disease. An internet search reveals stories from PD patients who are using lithium "off label" as part of their treatment regime; others report benefits from low dose lithium salts which are available as a supplement in some health food stores. "This finding gives us an opportunity to explore lithium as a recognized therapeutic for PD, in doses that are safe and effective" said Andersen.

Contributors to the work:

Other Buck Institute researchers involved in the study include Yong-Hwan Kim, Anand Rane and Stephanie Lussier. The research was supported by a grant from the National Institutes of Health.

Citation:

Lithium protects against oxidative stress-mediated cell death in alpha-synuclein over-expressing in vitro and in vivo models of Parkinson's disease. JNR: 852471-744204

About the Buck Institute for Research on Aging:

The Buck Institute is the first freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual's life. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer's and Parkinson's disease, cancer, cardiovascular disease and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For more information: www.thebuck.org.

Kris Rebillot | EurekAlert!
Further information:
http://www.buckinstitute.org

Further reports about: Alzheimer Lithium Parkinson brain aging

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>