Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listeria clever at finding its way into bloodstream, causing sickness

26.10.2010
Pathogenic listeria tricks intestinal cells into helping it pass through those cells to make people ill, and, if that doesn't work, the bacteria simply goes around the cells, according to a Purdue University study.

Arun Bhunia, a professor of food science, and Kristin Burkholder, a former Purdue graduate student who is now a postdoctoral researcher in microbiology and immunology at the University of Michigan Medical School, found that listeria, even in low doses, somehow triggers intestinal cells to express a new protein, heat shock protein 60, that acts as a receptor for listeria.

This may allow the bacteria to enter the cells in the intestinal wall and exit into a person's bloodstream. Bhunia and Burkholder's findings were published in the early online version of the journal Infection and Immunity.

"It's possible that host cells generate more of these proteins in order to protect themselves during a stressful event such as infection," Burkholder said. "Our data suggest that listeria may benefit from this by actually using those proteins as receptors to enhance infection."

Listeria monocytogenes is a foodborne bacteria that can cause fever, muscle aches, nausea and diarrhea, as well as headaches, stiff neck, confusion, loss of balance and convulsions if it spreads to the nervous system. According to the U.S. Centers for Disease Control and Prevention, it sickens about 2,500 and kills 500 people each year in the United States and primarily affects pregnant women, newborns, older adults and those with weakened immune systems.

The findings suggest that listeria may pass between intestinal cells to sort of seep out of the intestines and into the bloodstream to cause infection.

"That can expedite the infection," Bhunia said.

Measurable increases of the heat shock 60 protein were detected when listeria was introduced to cultured intestinal cells.

Bhunia and Burkholder also introduced listeria to intestinal cells in the upper half of a dual-chamber container and counted the number of bacteria that passed through the cells and appeared in the lower chamber.

The bacteria moved to the lower chamber faster than it is known to do when moving through cells, and did so even when a mutant form of the bacteria that do not invade the intestinal cells was used. This suggests the bacteria are moving around the cells, Bhunia said.

"The infective dose is very low. Even 100 to 1,000 listeria cells can cause infection," Bhunia said. "We believe that these mechanisms are what allow listeria to cause infections at such low levels."

Bhunia said he next would try to understand how listeria and the heat shock 60 protein interact and work to develop methods to protect intestinal cells from the bacteria. The Center for Food Safety Engineering at Purdue funded part of the research.
Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Arun Bhunia, 765-494-5443, bhunia@purdue.edu
Kristin Burkholder, 734-763-5639, kburkhol@umich.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu
http://www.purdue.edu/newsroom/research/2010/101025BhuniaListeria.html
http://www.ag.purdue.edu/agcomm/pages/news.aspx

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>