Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listeria clever at finding its way into bloodstream, causing sickness

26.10.2010
Pathogenic listeria tricks intestinal cells into helping it pass through those cells to make people ill, and, if that doesn't work, the bacteria simply goes around the cells, according to a Purdue University study.

Arun Bhunia, a professor of food science, and Kristin Burkholder, a former Purdue graduate student who is now a postdoctoral researcher in microbiology and immunology at the University of Michigan Medical School, found that listeria, even in low doses, somehow triggers intestinal cells to express a new protein, heat shock protein 60, that acts as a receptor for listeria.

This may allow the bacteria to enter the cells in the intestinal wall and exit into a person's bloodstream. Bhunia and Burkholder's findings were published in the early online version of the journal Infection and Immunity.

"It's possible that host cells generate more of these proteins in order to protect themselves during a stressful event such as infection," Burkholder said. "Our data suggest that listeria may benefit from this by actually using those proteins as receptors to enhance infection."

Listeria monocytogenes is a foodborne bacteria that can cause fever, muscle aches, nausea and diarrhea, as well as headaches, stiff neck, confusion, loss of balance and convulsions if it spreads to the nervous system. According to the U.S. Centers for Disease Control and Prevention, it sickens about 2,500 and kills 500 people each year in the United States and primarily affects pregnant women, newborns, older adults and those with weakened immune systems.

The findings suggest that listeria may pass between intestinal cells to sort of seep out of the intestines and into the bloodstream to cause infection.

"That can expedite the infection," Bhunia said.

Measurable increases of the heat shock 60 protein were detected when listeria was introduced to cultured intestinal cells.

Bhunia and Burkholder also introduced listeria to intestinal cells in the upper half of a dual-chamber container and counted the number of bacteria that passed through the cells and appeared in the lower chamber.

The bacteria moved to the lower chamber faster than it is known to do when moving through cells, and did so even when a mutant form of the bacteria that do not invade the intestinal cells was used. This suggests the bacteria are moving around the cells, Bhunia said.

"The infective dose is very low. Even 100 to 1,000 listeria cells can cause infection," Bhunia said. "We believe that these mechanisms are what allow listeria to cause infections at such low levels."

Bhunia said he next would try to understand how listeria and the heat shock 60 protein interact and work to develop methods to protect intestinal cells from the bacteria. The Center for Food Safety Engineering at Purdue funded part of the research.
Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Arun Bhunia, 765-494-5443, bhunia@purdue.edu
Kristin Burkholder, 734-763-5639, kburkhol@umich.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu
http://www.purdue.edu/newsroom/research/2010/101025BhuniaListeria.html
http://www.ag.purdue.edu/agcomm/pages/news.aspx

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>