Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening for Love: A role for echolocation in mate choice?

31.07.2014

In a novel integrative study led by Dr. Sébastien Puechmaille, University of Greifswald, Germany, Prof. Emma Teeling, University College Dublin, Ireland and PD Dr. Björn Siemers, Max Planck Institute for Ornithology, Germany to be published in PLOS ONE, the researchers tested the role of echolocation in mate choice.

They showed for the first time that bats are indeed ‘listening’ for a good mate rather than ‘looking for one’. Combining ecology, genetics and behavioural experiments of wild bats, this study showed that female Rhinolophus mehelyi horseshoe bats are using echolocation to choose a mate.


© S.J. Puechmaille.

The bat species Hipposideros pomona is one of the many bat species echolocating at high frequency (140 kHz), well above the human hearing range (20 kHz).

Probably the most important decision in any animal’s life, including our own, is finding the best mate! If you make the wrong decision then this can have repercussions for generations. Your choice of mate enables the transfer and continuation of your genes and indeed can drive the evolution of a species.

For humans, typically the first things that attracts you to a potential mate are visual cues, how well or attractive a person looks. ‘Good-looks’ have shown to be correlated with ‘good-genes’ or better fitness, so this makes sense. Well imagine having to find a mate in total darkness? This is the ultimate challenge that bats face.

Of all mammal species, bats are the hearing specialists. They use echolocation or sonar, to orient and detect prey in complete darkness, relying on the echo of their ultrasound calls to develop an acoustic image of their environment. Bat echolocation is considered to be one of the most fascinating yet least well understood modes of sensory perception.

Unlike bird song, the primary role of echolocation in bats is for orientation and finding food in complete darkness. Little is known about its use in communication and mate choice. Indeed, only in the past decade has it been suggested that echolocation calls can actually encode information on sex, body size, age and its role in mate choice has never been tested.

To test this hypothesis, the researchers have designed a suite of experiments and analyses on a wild population of Rhinolophus mehelyi near Tabachka research station in Bulgaria. The results of the experiments were pretty clear. The higher the frequency of the male’s call the more attractive the male is to the females. The higher the frequency of the male’s call the more, off-spring he will sire. Indeed, the male’s echolocation call seems to act like a ‘peacock’s tail’, the higher the frequency the more attractive the call.

However, despite this sexual advantage, these higher frequency calls are considered to be less efficient for foraging, and ultimately are an ‘attractive’ handicap. The male might ‘sound’ better to females but he can’t hunt as optimal-ly. It appears that the female’s preference for males with higher echolocation call frequency may explain why this species echolocates at 30 kHz higher than expected, something that has puzzled scientists until now. This evolutionary ‘trade-off’ between efficiency and attractiveness moulds and constrains bat echolocation.

This study is the first to show the role of echolocation in mate choice and will become a reference for future studies. Its power comes from the integration of three different types of data, ecological, behavioural and genetics. These results highlight bats as a novel system in which to explore the role of sound in mate choice and the potential conflict between natural and sexual selection on specific traits in evolution.

This paper has just been published with Open Access in PLOS ONE (http://dx.plos.org/10.1371/journal.pone.0103452) on the 30th July 2014. [Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi DOI: 10.1371/journal.pone.0103452]. It represents an Irish-German driven project, funded by an IRCSET-Marie Curie International Mobility Fellowships in Science, Engineering and Technology awarded to S.J. Puechmaille. 

Contact details of authors for correspondence

First author
Dr. Sébastien Puechmaille
Ernst-Moritz-Arndt-University of Greifswald
Zoology Institute
Johann-Sebastian-Bach-Str. 11/12
17489 Greifswald, GERMANY
Phone +49 3834 86-4068
s.puechmaille@gmail.com

Senior author
Prof. Emma Teeling
School of Biology and Environmental Science
University College Dublin, IRELAND
Phone +35 31 7162263
emma.teeling@ucd.ie

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Rhinolophus mehelyi acoustic bats genes mammal species

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>