Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening for Love: A role for echolocation in mate choice?

31.07.2014

In a novel integrative study led by Dr. Sébastien Puechmaille, University of Greifswald, Germany, Prof. Emma Teeling, University College Dublin, Ireland and PD Dr. Björn Siemers, Max Planck Institute for Ornithology, Germany to be published in PLOS ONE, the researchers tested the role of echolocation in mate choice.

They showed for the first time that bats are indeed ‘listening’ for a good mate rather than ‘looking for one’. Combining ecology, genetics and behavioural experiments of wild bats, this study showed that female Rhinolophus mehelyi horseshoe bats are using echolocation to choose a mate.


© S.J. Puechmaille.

The bat species Hipposideros pomona is one of the many bat species echolocating at high frequency (140 kHz), well above the human hearing range (20 kHz).

Probably the most important decision in any animal’s life, including our own, is finding the best mate! If you make the wrong decision then this can have repercussions for generations. Your choice of mate enables the transfer and continuation of your genes and indeed can drive the evolution of a species.

For humans, typically the first things that attracts you to a potential mate are visual cues, how well or attractive a person looks. ‘Good-looks’ have shown to be correlated with ‘good-genes’ or better fitness, so this makes sense. Well imagine having to find a mate in total darkness? This is the ultimate challenge that bats face.

Of all mammal species, bats are the hearing specialists. They use echolocation or sonar, to orient and detect prey in complete darkness, relying on the echo of their ultrasound calls to develop an acoustic image of their environment. Bat echolocation is considered to be one of the most fascinating yet least well understood modes of sensory perception.

Unlike bird song, the primary role of echolocation in bats is for orientation and finding food in complete darkness. Little is known about its use in communication and mate choice. Indeed, only in the past decade has it been suggested that echolocation calls can actually encode information on sex, body size, age and its role in mate choice has never been tested.

To test this hypothesis, the researchers have designed a suite of experiments and analyses on a wild population of Rhinolophus mehelyi near Tabachka research station in Bulgaria. The results of the experiments were pretty clear. The higher the frequency of the male’s call the more attractive the male is to the females. The higher the frequency of the male’s call the more, off-spring he will sire. Indeed, the male’s echolocation call seems to act like a ‘peacock’s tail’, the higher the frequency the more attractive the call.

However, despite this sexual advantage, these higher frequency calls are considered to be less efficient for foraging, and ultimately are an ‘attractive’ handicap. The male might ‘sound’ better to females but he can’t hunt as optimal-ly. It appears that the female’s preference for males with higher echolocation call frequency may explain why this species echolocates at 30 kHz higher than expected, something that has puzzled scientists until now. This evolutionary ‘trade-off’ between efficiency and attractiveness moulds and constrains bat echolocation.

This study is the first to show the role of echolocation in mate choice and will become a reference for future studies. Its power comes from the integration of three different types of data, ecological, behavioural and genetics. These results highlight bats as a novel system in which to explore the role of sound in mate choice and the potential conflict between natural and sexual selection on specific traits in evolution.

This paper has just been published with Open Access in PLOS ONE (http://dx.plos.org/10.1371/journal.pone.0103452) on the 30th July 2014. [Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi DOI: 10.1371/journal.pone.0103452]. It represents an Irish-German driven project, funded by an IRCSET-Marie Curie International Mobility Fellowships in Science, Engineering and Technology awarded to S.J. Puechmaille. 

Contact details of authors for correspondence

First author
Dr. Sébastien Puechmaille
Ernst-Moritz-Arndt-University of Greifswald
Zoology Institute
Johann-Sebastian-Bach-Str. 11/12
17489 Greifswald, GERMANY
Phone +49 3834 86-4068
s.puechmaille@gmail.com

Senior author
Prof. Emma Teeling
School of Biology and Environmental Science
University College Dublin, IRELAND
Phone +35 31 7162263
emma.teeling@ucd.ie

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Rhinolophus mehelyi acoustic bats genes mammal species

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>