Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid or solid? Charged nanoparticles in lipid membrane decide

11.11.2008
Like water and ice cubes mixed in a glass, a group of organic compounds called lipids can coexist as liquid and solid in membranes. This patchiness in phospholipid membranes is fundamental to their use as biomolecules and biosensors.

Using charged nanoparticles, researchers at the University of Illinois have found a new way to stimulate patchiness in phospholipid membranes.

"We are seeing a previously unsuspected responsiveness in phospholipid membranes," said Steve Granick, a Founder Professor of Engineering at the U. of I. "What we thought was possible only with the specificity of certain proteins, we now see can happen with simple, charged nanoparticles."

Lipids are the building blocks of cell membranes. In earlier work, Granick and graduate student Liangfang Zhang found a way to stabilize sensitive lipid membranes by attaching charged nanoparticles to the membrane surface.

Now, Granick, Zhang, graduate research assistant Bo Wang and research scientist Sung Chul Bae show that a phospholipid membrane can coexist in two phases – solid and liquid – according to what binds to it. This inherent patchiness presents an additional mechanism for changing the stiffness of phospholipid membranes.

The researchers report their work in a paper to be published next week in the Online Early Edition of the Proceedings of the National Academy of Sciences.

Using fluorescence and calorimetry methods, the researchers studied interactions between charged nanoparticles and membranes formed from single-component lipids. Because the membrane was composed of one sole lipid type, the traditional explanation for spatial patchiness – an uneven distribution of different lipids – was eliminated.

While a variety of nanoparticles was used, the most common type was polystyrene spheres about 20 nanometers in diameter (a nanometer is 1 billionth of a meter). Where the nanoparticles attached to the membrane, the membrane responded by changing phase.

"The electric charge acted as a switch," Granick said. "Nanoparticles with a negative charge switched membranes from liquid to solid. Nanoparticles with a positive charge switched the membranes from solid to liquid."

Phase changes occurred in patches of membranes where phospholipid molecules swiveled after binding to charged nanoparticles. This binding-induced behavior, where the same lipid can coexist in two different phases, offers a new mechanism for modulating stiffness in membranes.

In future work, the researchers plan to study the effects of smaller, charged nanoparticles; the effects of charged nanoparticles on living cells; and novel ways to stabilize lipid membranes for targeted drug delivery.

"These experiments are helping us better understand both the structure of phospholipid membranes and the potential biological effects of exposure to nanoparticles found in our normal, everyday environment," Granick said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>