Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid metal makes silicon crystals at record low temperatures

25.01.2013
A new way of making crystalline silicon, developed by U-M researchers, could make this crucial ingredient of computers and solar cells much cheaper and greener.

Silicon dioxide, or sand, makes up about 40 percent of the earth's crust, but the industrial method for converting sand into crystalline silicon is expensive and has a major environmental impact due to the extreme processing conditions.

"The crystalline silicon in modern electronics is currently made through a series of energy-intensive chemical reactions with temperatures in excess of 2,000 degrees Fahrenheit that produces a lot of carbon dioxide," said Stephen Maldonado, professor of chemistry and applied physics.

Recently, Maldonado and chemistry graduate students Junsi Gu and Eli Fahrenkrug discovered a way to make silicon crystals directly at just 180 F, the internal temperature of a cooked turkey. And they did it by taking advantage of a phenomenon you can see right in your kitchen.

When water is super-saturated with sugar, that sugar can spontaneously form crystals, popularly known as rock candy.

"Instead of water, we're using liquid metal, and instead of sugar, we're using silicon," Maldonado said.

Maldonado and colleagues made a solution containing silicon tetrachloride and layered it over a liquid gallium electrode. Electrons from the metal converted the silicon tetrachloride into raw silicon, which then dissolved into the liquid metal.

"The liquid metal is the key aspect of our process," Maldonado said. "Many solid metals can also deliver electrons that transform silicon tetrachloride into disordered silicon, but only metals like gallium can additionally serve as liquids for silicon crystallization without additional heat."

The researchers reported dark films of silicon crystals accumulating on the surfaces of their liquid gallium electrodes. So far, the crystals are very small, about 1/2000th of a millimeter in diameter, but Maldonado hopes to improve the technique and make larger silicon crystals, tailored for applications such as converting light energy to electricity or storing energy. The team is exploring several variations on the process, including the use of other low-melting-point metal alloys.

If the approach proves viable, the implications could be huge, especially for the solar energy industry. Crystalline silicon is presently the most-used solar energy material, but the cost of silicon has driven many researchers to actively seek alternative semiconductors.

"It's too premature to estimate precisely how much the process could lower the price of silicon, but the potential for a scalable, dramatically less expensive and more environmentally benign process is there," Maldonado said. "The dream ultimately is to go from sand to crystalline silicon in one step. There's no fundamental law that says this can't be done."

The study, which appears in the Journal of the American Chemical Society, was funded by the American Chemical Society Petroleum Research Fund.

The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

The study is titled "Direct Electrodeposition of Crystalline Silicon at Low Temperatures" (DOI: 10.1021/ja310897r): http://dx.doi.org/10.1021/ja310897r

Stephen Maldonado's lab group: www.umich.edu/~mgroup

Kate McAlpine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>