Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lionfish characteristics make them more 'terminator' than predator

14.08.2014

New research on the predatory nature of red lionfish, the invasive Pacific Ocean species that is decimating native fish populations in parts of the Caribbean Sea and Atlantic Ocean, seems to indicate that lionfish are not just a predator, but more like the "terminator" of movie fame.

The finding of behavior that was called "alarming" was presented today by Kurt Ingeman, a researcher from Oregon State University, at the annual meeting of the Ecological Society of America.


Research done with the fairy basslet, a common prey of lionfish in the Atlantic Ocean, demonstrates that lionfish are more voracious predators than other native fish, and will still hunt until almost the last of their prey is gone.

Credit: (Image courtesy of Oregon State University)

Most native predatory fish are attracted to prey when their numbers are high, when successful attacks are easy and when a minimum of energy is needed to catch and eat other fish, according to previous research done by Michael Webster, a fish ecologist who received his doctorate from OSU. As the population of prey diminishes, the native predators often move on to other areas where, literally, the fishing is better.

The new research concludes that lionfish, by comparison, appear to stay in one area even as the numbers of prey diminish, and in some cases can eat the population to local extinction. They have unique characteristics that make this possible, and like the terminator, they simply will not stop until the last of their prey is dead.

"Lionfish seem to be the ultimate invader," said Ingeman, a doctoral candidate in the Department of Integrative Biology within the OSU College of Science. "Almost every new thing we learn about them is some characteristic that makes them a more formidable predator. And it's now clear they will hunt successfully even when only a few fish are present. This behavior is unusual and alarming."

This research was conducted on replicated natural reefs in the Bahamas, measuring prey mortality of the fairy basslet – a popular aquarium fish and a common prey of lionfish.

Predation rates were compared between reefs with the invasive lionfish and reefs with native predators alone, and across a range of population levels of the fairy basslet. Ingeman found that when prey fish were present at a low population density, the rate of mortality with lionfish present was four times higher than that caused by native predators alone, such as medium-sized groupers or trumpet fish.

The findings are of some importance, researchers said, because fairy basslet live in small local populations, which are most vulnerable to local extinction. It also shows that the mechanisms that ordinarily regulate population size can be altered.

"Reef fish usually hide in rocks and crevices for protection, and with high populations, there is a scramble for shelter," Ingeman said. "Native predators take advantage of this situation by mostly eating when and where prey are abundant. As prey population levels decline, it takes a lot more energy to catch fish, so the predators often move on to other areas."

Because of this process that scientists call "density-dependent" predation, populations of native prey fish tend to shrink when they get too large, grow when they get too small, and are rarely ever wiped out completely.

Lionfish, however, have such advantages as an invasive species that they apparently feel no need to move on for better or easier hunting. They may not be recognized as a predator by other fish, leading to high mortality even when shelter is abundant. Lionfish are also very efficient hunters, are well defended themselves by poisonous spines, and can thrive at deep levels in the ocean. They tolerate a wide range of habitats and water conditions, reproduce rapidly most of the year, eat many different species of native fish and may overeat rare species.

Still unclear, Ingeman said, is whether evolutionary pressures may allow native fish in the Atlantic Ocean to adapt new behaviors that provide better defense against lionfish.

"There's a strong pressure here for natural selection to come into play eventually," Ingeman said. "We know that fish can learn and change their behavior, sometimes over just a few generations. But we don't have any studies yet to demonstrate this is taking place with native fish populations in the Atlantic."

The lionfish invasion in the Atlantic Ocean is believed to have begun in the 1980s and now covers an area larger than the entirety of the United States. Ingeman's advisor, Mark Hixon, and fellow graduate students have shown that lionfish can wipe out over 90 percent of more of the native fish in some hard-hit areas.

###

The research was supported by the National Science Foundation and the Cape Eleuthera Institute of the Bahamas.

Editor's Note: Digital images are available to illustrate this story.

Fairy basslet: http://bit.ly/1ywgHl2

Reef surveys in the Bahamas: http://bit.ly/1mJAR5o

Kurt Ingeman | Eurek Alert!
Further information:
http://www.oregonstate.edu

Further reports about: Atlantic Bahamas Lionfish eat extinction invasive levels mortality natural populations species

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>