Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lionfish characteristics make them more 'terminator' than predator

14.08.2014

New research on the predatory nature of red lionfish, the invasive Pacific Ocean species that is decimating native fish populations in parts of the Caribbean Sea and Atlantic Ocean, seems to indicate that lionfish are not just a predator, but more like the "terminator" of movie fame.

The finding of behavior that was called "alarming" was presented today by Kurt Ingeman, a researcher from Oregon State University, at the annual meeting of the Ecological Society of America.


Research done with the fairy basslet, a common prey of lionfish in the Atlantic Ocean, demonstrates that lionfish are more voracious predators than other native fish, and will still hunt until almost the last of their prey is gone.

Credit: (Image courtesy of Oregon State University)

Most native predatory fish are attracted to prey when their numbers are high, when successful attacks are easy and when a minimum of energy is needed to catch and eat other fish, according to previous research done by Michael Webster, a fish ecologist who received his doctorate from OSU. As the population of prey diminishes, the native predators often move on to other areas where, literally, the fishing is better.

The new research concludes that lionfish, by comparison, appear to stay in one area even as the numbers of prey diminish, and in some cases can eat the population to local extinction. They have unique characteristics that make this possible, and like the terminator, they simply will not stop until the last of their prey is dead.

"Lionfish seem to be the ultimate invader," said Ingeman, a doctoral candidate in the Department of Integrative Biology within the OSU College of Science. "Almost every new thing we learn about them is some characteristic that makes them a more formidable predator. And it's now clear they will hunt successfully even when only a few fish are present. This behavior is unusual and alarming."

This research was conducted on replicated natural reefs in the Bahamas, measuring prey mortality of the fairy basslet – a popular aquarium fish and a common prey of lionfish.

Predation rates were compared between reefs with the invasive lionfish and reefs with native predators alone, and across a range of population levels of the fairy basslet. Ingeman found that when prey fish were present at a low population density, the rate of mortality with lionfish present was four times higher than that caused by native predators alone, such as medium-sized groupers or trumpet fish.

The findings are of some importance, researchers said, because fairy basslet live in small local populations, which are most vulnerable to local extinction. It also shows that the mechanisms that ordinarily regulate population size can be altered.

"Reef fish usually hide in rocks and crevices for protection, and with high populations, there is a scramble for shelter," Ingeman said. "Native predators take advantage of this situation by mostly eating when and where prey are abundant. As prey population levels decline, it takes a lot more energy to catch fish, so the predators often move on to other areas."

Because of this process that scientists call "density-dependent" predation, populations of native prey fish tend to shrink when they get too large, grow when they get too small, and are rarely ever wiped out completely.

Lionfish, however, have such advantages as an invasive species that they apparently feel no need to move on for better or easier hunting. They may not be recognized as a predator by other fish, leading to high mortality even when shelter is abundant. Lionfish are also very efficient hunters, are well defended themselves by poisonous spines, and can thrive at deep levels in the ocean. They tolerate a wide range of habitats and water conditions, reproduce rapidly most of the year, eat many different species of native fish and may overeat rare species.

Still unclear, Ingeman said, is whether evolutionary pressures may allow native fish in the Atlantic Ocean to adapt new behaviors that provide better defense against lionfish.

"There's a strong pressure here for natural selection to come into play eventually," Ingeman said. "We know that fish can learn and change their behavior, sometimes over just a few generations. But we don't have any studies yet to demonstrate this is taking place with native fish populations in the Atlantic."

The lionfish invasion in the Atlantic Ocean is believed to have begun in the 1980s and now covers an area larger than the entirety of the United States. Ingeman's advisor, Mark Hixon, and fellow graduate students have shown that lionfish can wipe out over 90 percent of more of the native fish in some hard-hit areas.

###

The research was supported by the National Science Foundation and the Cape Eleuthera Institute of the Bahamas.

Editor's Note: Digital images are available to illustrate this story.

Fairy basslet: http://bit.ly/1ywgHl2

Reef surveys in the Bahamas: http://bit.ly/1mJAR5o

Kurt Ingeman | Eurek Alert!
Further information:
http://www.oregonstate.edu

Further reports about: Atlantic Bahamas Lionfish eat extinction invasive levels mortality natural populations species

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>