Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link uncovered between viral RNA and human immune response

06.08.2009
In its fight against an intruding virus, an enzyme in our immune system may sense certain types of viral RNA pairs, according to scientists.

The key lies in a virus' RNA -- a long molecular chain often used to make proteins -- and how it regulates an enzyme called protein kinase R (PKR), according to researchers from Penn State, the University of Connecticut and the University of Beijing.

"PKR plays an important role in the human immune system," said Laurie Heinicke, graduate student of chemistry and first author for the paper. "It is activated by long stretches of double-stranded RNA. As a part of our built-in immune response, PKR can recognize viral double-stranded RNAs and inhibit their production."

Viral RNA enters human cells when attacking viruses inject their genetic material into the cells and force them to manufacture future generations of viruses. By latching on to specific sites on viral RNA, PKR can interrupt this process.

Or, according to Heinicke, "once activated by certain RNAs, PKR stops protein synthesis in the infected cell and ultimately causes cell death."

One way for this to happen is for the viral RNA to first form linked pairs called dimers. These RNA dimers then allow separate sets of PKR to bind with themselves, also forming dimers, a state where the paired PKR is most effective against a viral onslaught.

"We showed that a small region of the HIV-1 genome termed TAR can regulate PKR," Heinicke continued. "The caveat, however, is that this RNA must form a dimer in order to be an activator."

The extra length that dimer RNA provides is critical in encouraging PKR to pair up and function properly.

"The length needed for one PKR to bind to RNA is fifteen base pairs," said Philip Bevilacqua, professor of chemistry, Penn State, one of the lead scientists on the project along with James Cole, associate professor, University of Connecticut. "To get two PKRs to bind and dimerize, you need an RNA strand that is twice as long." Cole's laboratory provided evidence of dimerization of RNA and PKR.

In their experiments at Penn State, the scientists found the dimer RNA activated PKR from 9 to 118 times more than the single strand RNA, depending on the RNA type. TAR RNA dimerization activated the most PKR when the TAR did not exhibit structural defects. The researchers report their findings in a recent issue of the Journal of Molecular Biology.

"Adding these defects decreases the number of places where PKR can bind to the RNA," Heinicke explained. RNAs that showed the greatest degree of symmetry are more potent PKR activators than ones with defects. "It appears as though length is a necessary, but not sufficient condition for activation," said Bevilacqua.

The scientists constructed RNAs to remove TAR defects. Dimers of these RNAs increased PKR activity, compared to more asymmetric "wild-type" TAR dimers. Single strands of these RNAs did not activate PKR. This is in contrast to previous work, which reported that the single strand wild-type TAR showed a 50-fold increase of activation over more symmetric variants.

"This helps us find what the actual molecular structure is that activates PKR," said Bevilacqua. "It is still basic research for now, but finding the cause for this may ultimately lead to understanding disease."

Heinicke, Bevilacqua and Cole worked with Subba Rao Nallagatla, chemistry research associate, Penn State, University Park; Amy Diegelman-Parente, assistant professor of biochemistry, Penn State Altoona; Jason Wong, molecular and cell biology postdoctoral fellow and Jeffrey Lary, analytical ultracentrifugation biotechnology facility scientist, University of Connecticut, and Xiaofeng Zheng, professor of biochemistry and molecular biology, University of Beijing.

The NIH funded this project.

A'ndrea Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>