Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link uncovered between viral RNA and human immune response

06.08.2009
In its fight against an intruding virus, an enzyme in our immune system may sense certain types of viral RNA pairs, according to scientists.

The key lies in a virus' RNA -- a long molecular chain often used to make proteins -- and how it regulates an enzyme called protein kinase R (PKR), according to researchers from Penn State, the University of Connecticut and the University of Beijing.

"PKR plays an important role in the human immune system," said Laurie Heinicke, graduate student of chemistry and first author for the paper. "It is activated by long stretches of double-stranded RNA. As a part of our built-in immune response, PKR can recognize viral double-stranded RNAs and inhibit their production."

Viral RNA enters human cells when attacking viruses inject their genetic material into the cells and force them to manufacture future generations of viruses. By latching on to specific sites on viral RNA, PKR can interrupt this process.

Or, according to Heinicke, "once activated by certain RNAs, PKR stops protein synthesis in the infected cell and ultimately causes cell death."

One way for this to happen is for the viral RNA to first form linked pairs called dimers. These RNA dimers then allow separate sets of PKR to bind with themselves, also forming dimers, a state where the paired PKR is most effective against a viral onslaught.

"We showed that a small region of the HIV-1 genome termed TAR can regulate PKR," Heinicke continued. "The caveat, however, is that this RNA must form a dimer in order to be an activator."

The extra length that dimer RNA provides is critical in encouraging PKR to pair up and function properly.

"The length needed for one PKR to bind to RNA is fifteen base pairs," said Philip Bevilacqua, professor of chemistry, Penn State, one of the lead scientists on the project along with James Cole, associate professor, University of Connecticut. "To get two PKRs to bind and dimerize, you need an RNA strand that is twice as long." Cole's laboratory provided evidence of dimerization of RNA and PKR.

In their experiments at Penn State, the scientists found the dimer RNA activated PKR from 9 to 118 times more than the single strand RNA, depending on the RNA type. TAR RNA dimerization activated the most PKR when the TAR did not exhibit structural defects. The researchers report their findings in a recent issue of the Journal of Molecular Biology.

"Adding these defects decreases the number of places where PKR can bind to the RNA," Heinicke explained. RNAs that showed the greatest degree of symmetry are more potent PKR activators than ones with defects. "It appears as though length is a necessary, but not sufficient condition for activation," said Bevilacqua.

The scientists constructed RNAs to remove TAR defects. Dimers of these RNAs increased PKR activity, compared to more asymmetric "wild-type" TAR dimers. Single strands of these RNAs did not activate PKR. This is in contrast to previous work, which reported that the single strand wild-type TAR showed a 50-fold increase of activation over more symmetric variants.

"This helps us find what the actual molecular structure is that activates PKR," said Bevilacqua. "It is still basic research for now, but finding the cause for this may ultimately lead to understanding disease."

Heinicke, Bevilacqua and Cole worked with Subba Rao Nallagatla, chemistry research associate, Penn State, University Park; Amy Diegelman-Parente, assistant professor of biochemistry, Penn State Altoona; Jason Wong, molecular and cell biology postdoctoral fellow and Jeffrey Lary, analytical ultracentrifugation biotechnology facility scientist, University of Connecticut, and Xiaofeng Zheng, professor of biochemistry and molecular biology, University of Beijing.

The NIH funded this project.

A'ndrea Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>