Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Link Found Between Alzheimer’s Disease and Protein Regulation in the Brain - Hope for New Treatments

Alzheimer’s research has focused primarily on efforts to identify and treat the factors that contribute to familial (genetic) dementia, which is caused by known mutations. This new research sought to understand the mechanisms in the development of Alzheimer’s that are linked to molecular response to the metabolic distress that increases with age.

A link has been discovered between Alzheimer’s disease and the activity level of a protein called eIF2alpha. This has been reported in a new study conducted at the University of Haifa’s Sagol Department of Neurobiology, recently published in the journal Neurobiology of Aging. According to Prof. Kobi Rosenblum, head of the Department, altering the performance of this protein via drug therapy could constitute a treatment for Alzheimer’s, which is incurable.

Alzheimer’s research in recent years has primarily focused on battling the disease once symptoms have appeared, even though it’s known that the disease nests in the brain many years before any symptoms are revealed. In advanced stages of the disease, Prof. Rosenblum explains, small lumps (called plaques) are identified forming in the brain from a protein called amyloid. These plaques, he says, are typical of Alzheimer’s sufferers and undermine brain functioning. Much research has been directed at understanding these plaques and trying to eliminate them or restrict their formation and growth.

The new study, conducted by research student Yifat Segev in the Laboratory for Research of Molecular and Cellular Mechanisms Underlying Learning and Memory, which is headed by Prof. Rosenblum, in cooperation with Prof. Danny Michaelson of Tel Aviv University, sought to identify factors that could be linked to Alzheimer’s even before the irreversible amyloid plaques are formed, and that are connected to the disease’s primary risk factor – age.

A previous study co-authored by Canadian researchers and Prof. Rosenblum’s lab at the University of Haifa, revealed that cognitive abilities could be improved by altering the activity of the eIF2alpha protein, which regulates the creation of proteins in all cells, including nerve cells. That research gave Alzheimer’s researchers a glimmer of hope: Perhaps it would be possible to improve cognitive abilities or even prevent cognitive damage in Alzheimer’s patients at an early stage of the disease by intervening in the mechanisms that regulate protein generation in nerve cells.

The current study compared mice that expressed the human Apoe4 gene - a gene known as a central risk factor for Alzheimer’s - with a group of mice with the parallel Apoe3 gene, which does not constitute a risk factor for the disease. Mice in the former group showed a change in the regulating mechanism for protein generation involving the eIF2alpha protein that damaged the cognitive abilities of those mice at a young age. This sort of mechanism change is characteristic of aging, and so also hinted at the tendency of these mice toward premature aging.

According to Segev, this is the first time that a link has been found between the activity of eIF2alpha and the Apoe4 gene in relation to Alzheimer’s disease. She noted that modification treatments for the eIF2alpha mechanism are being widely researched and are developing quickly, and so the more we can understand about the connection between this mechanism and Alzheimer’s, the more we can find ways to identify and slow the progress of the disease.

For more details contact
Rachel Feldman
Communications and Media
University of Haifa

Rachel Feldman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>