Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible Link Between Antioxidants and Infertility in Females

20.01.2011
Antioxidants are sold over the counter everywhere. They’re added to food, drink, and face cream. But according to Prof. Nava Dekel of the Weizmann Institute of Science’s Department of Biological Regulation, we still don’t have a complete understanding of how they act in our bodies.

New research by Prof. Dekel and her team, recently published in the Proceedings of the National Academy of Sciences (PNAS), has revealed an unexpected possible side effect of antioxidants: they might cause fertility problems in females.

Common antioxidants include vitamins C and E. These work by eliminating molecules called reactive oxygen species that are produced naturally in the body. Stress can cause these chemically active molecules to be overproduced; in large amounts they damage cells indiscriminately. By neutralizing these potentially harmful substances, antioxidants may, theoretically, improve health and slow down the aging process.

But when Prof. Dekel and her research team, including her former and present PhD students Dr. Ketty Shkolnik and Ari Tadmor, applied antioxidants to the ovaries of female mice, the results were surprising: ovulation levels dropped precipitously. That is, very few eggs were released from the ovarian follicles to reach the site of fertilization, compared to those in untreated ovaries.

To understand what lies behind these initial findings, the team asked whether it is possible that the process of ovulation might rely on the very “harmful” substances destroyed by antioxidants – reactive oxygen species.

Further testing in mice showed that this is, indeed, the case. In one experiment, for instance, Prof. Dekel and her team treated some ovarian follicles with luteinizing hormone, which is the physiological trigger for ovulation, and others with hydrogen peroxide, which is a reactive oxygen species. The results showed hydrogen peroxide fully mimicked the effect of the ovulation-inducing hormone. This implies that reactive oxygen species that are produced in response to luteinizing hormone serve, in turn, as mediators for this physiological stimulus leading to ovulation.

Among other things, these results help fill in a picture that has begun to emerge in recent years of fertility and conception, in which it appears that these processes share a number of common mechanisms with inflammation. It makes sense, says Prof. Dekel, that substances which prevent inflammation in other parts of the body might also get in the way of normal ovulation, and so more caution should be taken when administering such substances.

Much of Prof. Dekel’s research has focused on fertility – her previous results are already helping some women become pregnant. Ironically, the new study has implications for those seeking the opposite effect. According to Prof. Dekel, “On the one hand, these findings could prove useful to women who are having trouble getting pregnant. On the other, further studies might show that certain antioxidants might be effective means of birth control that could be safer than today’s hormone-based prevention.”

Prof. Dekel and her team are now planning further studies to investigate the exact mechanics of this step in the fertility process: to find out just how, when, and where antioxidants affect the ovaries, and to examine their effect on mice when administered in either food or drink. In addition, they plan to collect data on the possible link between females taking antioxidant supplements and difficulty conceiving.

Prof. Nava Dekel’s research is supported by the M.D. Moross Institute for Cancer Research; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; the Yeda-Sela Center for Basic Research; the Willner Family Center for Vascular Biology (Head); the Dwek Family Biomedical Research Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; and the J & R Foundation. Prof. Dekel is the incumbent of the Philip M. Klutznick Professorial Chair of Developmental Biology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>