Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linheng Li proposes novel theory for mammalian stem cell regulation

01.02.2010
Linheng Li, Ph.D., Investigator, together with Hans Clevers, M.D., Ph.D., Director of the Hubrecht Institute in Utrecht, Netherlands, co-authored a prospective review published today by the journal Science that proposes a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Adult stem cells are crucial for physiological tissue renewal and regeneration following injury. Current models assume the existence of a single quiescent (resting) population of stem cells residing in a single niche of a given tissue.

The Linheng Li Lab and others have previously reported that primitive blood-forming stem cells can be further separated into quiescent (reserved) and active (primed) sub-populations. Emerging evidence indicates that quiescent and active stem cell sub-populations also co-exist in several tissues — including hair follicle, intestine, bone marrow, and potentially in the neural system — in separate yet adjacent microenvironments. In the review, Dr. Li proposes that quiescent and active stem cell populations have separate but cooperative functional roles.

"Both quiescent and active stem cells co-exist in separate 'zones' in the same tissue," explained Dr. Li. "Active stem cells are the 'primed' sub-population that account for the generation of corresponding tissues, whereas quiescent stem cells function as a 'back-up' or 'reserved' sub-population, which can be activated in response to the loss of active stem cells or to tissue damage."

The new model would explain how the balance can be regulated between stem cell maintenance and simultaneous support of rapid tissue regeneration, not only at the individual cell level but also at the stem cell population level. The advantage of maintaining 'zoned' sub-populations of stem cells is to increase longevity of stem cells within organisms that have long life spans and large bodies.

The existence of two sub-populations of adult stem cells offers another advantage in the rapidly regenerating tissues in mammals by reducing the risk for mutations that cause tumors.

Intriguingly, cancers may utilize this same mechanism to maintain co-existing active-quiescent pools of stem cell sub-populations that support fast tumor growth (by active stem cells) while preserving the root of malignancy (by quiescent stem cells). This may explain the basis of drug resistance to cancer treatment.

"If this hypothesis is true, the critical question will be how to target quiescent drug-resistant cancer stem cells," said Dr. Li. "We will test this model in cancers in an effort to determine how to activate quiescent (drug-resistant) cancer stem cells for further targeting."

Dr. Li also is a Professor in the Department of Pathology & Laboratory Medicine at The University of Kansas School of Medicine. Learn more about his work at www.stowers.org/labs/LiLab.asp.

Dr. Clevers is also a Professor of Molecular Genetics at the Hubrecht Institute and was the first to report the existence of active stem cells in intestine. Learn more about his work at www.hubrecht.eu/research/clevers.

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over a half billion dollars in pursuit of its mission. Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities.

Susan Weigel | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>