Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighting the way to understanding the brain

30.11.2011
Harvard researcher creates neurons that light up as they fire

In a scientific first that potentially could shed new light on how signals travel in the brain, how learning alters neural pathways, and might lead to speedier drug development, scientists at Harvard have created genetically-altered neurons that light up as they fire.

The work, led by John L. Loeb Associate Professor of the Natural Sciences Adam Cohen, and described in Nature Methods on Nov. 28, involved using a gene from a Dead Sea microorganism to produce a protein that, when exposed to the electrical signal in a neuron, fluoresces, allowing researchers to trace the propagation of signals through the cell.

"It's very exciting," Cohen said of the research. "In terms of basic biology, there are a number of things we can now do which we've never been able to do. We can see how these signals spread through the neuronal network. We can study the speed at which the signal spreads, and if it changes as the cells undergo changes. We may someday even be able to study how these signals move in living animals."

To create the light-up neurons, Cohen and his team infected brain cells that had been cultured in the lab with a genetically-altered virus that contained the protein-producing gene. Once infected, the cells began manufacturing the protein, allowing them to light up.

"The way a neuron works is it has a membrane around the whole cell, sort of like a wire and insulation, except in a neuron the membrane is an active substance," Cohen said. "Normally, the inside of the cell is negatively-charged relative to the outside.

"When a neuron fires, the voltage reverses for a very short time, about 1/1,000th of a second," he continued. "This brief spike in voltage travels down the neuron and then activates other neurons downstream. Our protein is sitting in the membrane of the neurons, so as that pulse washes over the proteins, they light up, giving us an image of the neurons as they fire."

The research has the potential to revolutionize our understanding of how electrical signals move through the brain, as well as other tissues, Cohen said.

"Before, the best way to make a measurement of the electrical activity in a cell was to stick a little electrode into it and record the results on a volt meter," he said. "The issue, however, was that you were only measuring the voltage at one point, you weren't seeing a spatial map of how signals propagate. Now, we will be able to study how the signal spreads, whether it moves through all neurons at the same speed, and even how signals change if the cells are undergoing something akin to learning."

Another limitation of using electrodes, Cohen said, is that the process tends to kill the cells relatively quickly, making it impossible to study processes that take place over time. His new process, however, opens the door to studying the effects of growth and development on neurons, or to monitor how stem cells develop.

Being able to track the electrical pathways in cells also holds practical applications, Cohen said, particularly when it comes to the development of new drugs or other therapies.

"Many, many drugs target ion channels, which are important proteins in governing the activity of the heart and brain," he said. "Right now, if you want to test a compound designed to activate or inactivate a particular ion channel, you have to culture the cell, test it with an electrode, then add the drug and see what happens. This is an extremely slow process – it typically takes an hour or two for each data point.

"Now that we can do it optically in the microscope, we can test the efficacy of a drug on a cell in a few seconds. Instead of testing one compound or ten compounds, we can try to test thousands or even hundreds of thousands. We can test different conditions, different mixtures – it will increase the throughput for testing new drugs."

The process may even open new research avenues for those studying genetic conditions ranging from depression to heart disease.

Using stem cells, researchers can culture cells in the lab that are genetically identical to a patient known to carry a genetic predisposition to a particular condition, then study how signals move through those cells.

Cohen's research was supported by the Harvard Center for Brain Science, National Institutes of Health grants and the Harvard/MIT Joint Research Grants Program in Basic Neuroscience.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>