Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light used to measure the 'big stretch' in spider silk proteins

15.02.2016

While working to improve a tool that measures the pushes and pulls sensed by proteins in living cells, biophysicists at Johns Hopkins say they've discovered one reason spiders' silk is so elastic: Pieces of the silk's protein threads act like supersprings, stretching to five times their initial length. The investigators say the tool will shed light on many biological events, including the shifting forces between cells during cancer metastasis.

"All other known springs, biological and nonbiological, lengthen in a way that is directly proportional to the force applied to them only until they have been stretched to about 20 percent of their original length," notes Taekjip Ha, Ph.D., the study's lead researcher. "At that point, you have to apply more and more force to stretch them the same distance as before. But the piece of the spider silk protein we focused on continues to stretch in direct proportion to the force applied until it reaches its maximal stretch of 500 percent."


Without the protein myosin to pull on it, vinculin can been seen to relax in this human cell (lower right) as the colors shift from blue to red as FRET increases.

Credit: Taekjip Ha

Details of the research were published online in the journal Nano Letters on Feb. 5.

Ha, a Bloomberg Distinguished Professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine, says the new discovery came during follow-up to research he and his team, then at the University of Illinois at Urbana-Champaign, described in the journal Nature in 2010, work done in collaboration with cell biologists led by Martin Schwartz, then at the University of Virginia.

The Virginia team set up those experiments by inserting a repeating amino acid sequence -- taken from the spider silk protein known as flagelliform -- into a human protein called vinculin. Vinculin is responsible for internalizing forces outside a cell by bridging the cellular membrane and the actin network within the cell, making it an important mechanical communicator within the cell.

The scientists also flanked the flagelliform insert in vinculin with two fluorescent proteins to light up and "report" what was going on through fluorescence resonance energy transfer, or FRET. FRET occurs when one fluorescent molecule is close enough to another that it activates the second. So, when vinculin was relaxed within a cell, it "glowed" yellow, the color of the second fluorescent protein being activated by the first. As vinculin stretched, it began to glow blue -- the color of the first fluorescent protein -- because the lengthening distance between the two made FRET activation of the yellow protein impossible.

Using regular fluorescence microscopy, the scientists were able to watch the forces acting on vinculin in live cells in real time. But an issue remained: how to translate the changing colors into measurements of force "sensed" by vinculin.

That's where his team came in, says Ha. The researchers attached one end of modified vinculin to a glass plate and the other to a tether made of DNA with a small plastic bead at the end. They then pulled on the bead with what Ha describes as "chopsticks made of light," focusing a beam of light on a tiny spot nearby and generating an attractive force that pulled the bead toward the light source. That way, Ha says, his investigators could link the amount of FRET with the amount of force on vinculin, allowing them to measure the dynamic forces acting on proteins in live cells just by imaging them.

In that earlier study, the team inserted 40 flagelliform amino acids into vinculin, composed of eight repeats of the amino acid sequence GPGGA. In this new study, the scientists wanted to learn more about the flagelliform tool by varying its length, so they created inserts of five and 10 repeats to test alongside the original insert of eight. What they found is that the shortest insert was the most responsive to the widest range of forces, responding with linear increases in length to forces from 1 to 10 piconewtons. (Ha says that 1 piconewton is approximately the weight of a bacterium.)

The team wasn't expecting the spider silk inserts to show such linear behavior because, according to Ha, they don't form well-defined, three-dimensional structures. "Usually, unstructured proteins show disorderly, nonlinear behavior when we pull on them," says Ha. "The fact that these don't act that way means that they will be really useful tools for studying protein mechanics because their behavior is easy to understand and predict."

Already, Ha says, the flagelliform insert of eight repeats from the previous research has been used to study many biological phenomena, including the shifting forces between cells during cancer metastasis and the pushing and pulling of cells during the development of simple, multicelled organisms, like worms.

"Tension is important for many activities inside cells," says Ha. "Cells sense mechanical forces in their environments and change their behaviors and functions in response. Now we have a way to watch and understand these forces and how they are transmitted at a molecular level in living cells."

Media Contact

Catherine Gara
ckolf@jhmi.edu
443-287-2251

 @HopkinsMedicine

http://www.hopkinsmedicine.org

Catherine Gara | EurekAlert!

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>