Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light used to measure the 'big stretch' in spider silk proteins

15.02.2016

While working to improve a tool that measures the pushes and pulls sensed by proteins in living cells, biophysicists at Johns Hopkins say they've discovered one reason spiders' silk is so elastic: Pieces of the silk's protein threads act like supersprings, stretching to five times their initial length. The investigators say the tool will shed light on many biological events, including the shifting forces between cells during cancer metastasis.

"All other known springs, biological and nonbiological, lengthen in a way that is directly proportional to the force applied to them only until they have been stretched to about 20 percent of their original length," notes Taekjip Ha, Ph.D., the study's lead researcher. "At that point, you have to apply more and more force to stretch them the same distance as before. But the piece of the spider silk protein we focused on continues to stretch in direct proportion to the force applied until it reaches its maximal stretch of 500 percent."


Without the protein myosin to pull on it, vinculin can been seen to relax in this human cell (lower right) as the colors shift from blue to red as FRET increases.

Credit: Taekjip Ha

Details of the research were published online in the journal Nano Letters on Feb. 5.

Ha, a Bloomberg Distinguished Professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine, says the new discovery came during follow-up to research he and his team, then at the University of Illinois at Urbana-Champaign, described in the journal Nature in 2010, work done in collaboration with cell biologists led by Martin Schwartz, then at the University of Virginia.

The Virginia team set up those experiments by inserting a repeating amino acid sequence -- taken from the spider silk protein known as flagelliform -- into a human protein called vinculin. Vinculin is responsible for internalizing forces outside a cell by bridging the cellular membrane and the actin network within the cell, making it an important mechanical communicator within the cell.

The scientists also flanked the flagelliform insert in vinculin with two fluorescent proteins to light up and "report" what was going on through fluorescence resonance energy transfer, or FRET. FRET occurs when one fluorescent molecule is close enough to another that it activates the second. So, when vinculin was relaxed within a cell, it "glowed" yellow, the color of the second fluorescent protein being activated by the first. As vinculin stretched, it began to glow blue -- the color of the first fluorescent protein -- because the lengthening distance between the two made FRET activation of the yellow protein impossible.

Using regular fluorescence microscopy, the scientists were able to watch the forces acting on vinculin in live cells in real time. But an issue remained: how to translate the changing colors into measurements of force "sensed" by vinculin.

That's where his team came in, says Ha. The researchers attached one end of modified vinculin to a glass plate and the other to a tether made of DNA with a small plastic bead at the end. They then pulled on the bead with what Ha describes as "chopsticks made of light," focusing a beam of light on a tiny spot nearby and generating an attractive force that pulled the bead toward the light source. That way, Ha says, his investigators could link the amount of FRET with the amount of force on vinculin, allowing them to measure the dynamic forces acting on proteins in live cells just by imaging them.

In that earlier study, the team inserted 40 flagelliform amino acids into vinculin, composed of eight repeats of the amino acid sequence GPGGA. In this new study, the scientists wanted to learn more about the flagelliform tool by varying its length, so they created inserts of five and 10 repeats to test alongside the original insert of eight. What they found is that the shortest insert was the most responsive to the widest range of forces, responding with linear increases in length to forces from 1 to 10 piconewtons. (Ha says that 1 piconewton is approximately the weight of a bacterium.)

The team wasn't expecting the spider silk inserts to show such linear behavior because, according to Ha, they don't form well-defined, three-dimensional structures. "Usually, unstructured proteins show disorderly, nonlinear behavior when we pull on them," says Ha. "The fact that these don't act that way means that they will be really useful tools for studying protein mechanics because their behavior is easy to understand and predict."

Already, Ha says, the flagelliform insert of eight repeats from the previous research has been used to study many biological phenomena, including the shifting forces between cells during cancer metastasis and the pushing and pulling of cells during the development of simple, multicelled organisms, like worms.

"Tension is important for many activities inside cells," says Ha. "Cells sense mechanical forces in their environments and change their behaviors and functions in response. Now we have a way to watch and understand these forces and how they are transmitted at a molecular level in living cells."

Media Contact

Catherine Gara
ckolf@jhmi.edu
443-287-2251

 @HopkinsMedicine

http://www.hopkinsmedicine.org

Catherine Gara | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>