Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Light Shined on Photosynthesis

04.04.2012
Photosynthesis is one of the fundamental processes of life on Earth. The evolutionary transition from anoxygenic (no oxygen produced) to oxygenic (oxygen-producing) photosynthesis resulted in the critical development of atmospheric oxygen in amounts large enough to allow the evolution of organisms that use oxygen, including plants and mammals.

One of the outstanding questions of the early Earth is how ancient organisms made this transition. A team of scientists from Arizona State University has moved us closer to understanding how this occurred, in a paper recently published in the Proceedings of the National Academy of Sciences.

The paper is titled, "Light-driven oxygen production from superoxide by manganese-binding bacterial reaction centers," and is authored by James Allen, JoAnn Williams, Tien Le Olson, Aaron Tufts, Paul Oyala and Wei-Jen Lee, all from the Department of Chemistry and Biochemistry in ASU's College of Liberal Arts and Sciences.

Plants and algae, as well as cyanobacteria, use photosynthesis to produce oxygen and “fuels,” the latter being oxidizable substances like carbohydrates and hydrogen. There are two pigment-protein complexes that orchestrate the primary reactions of light in oxygenic photosynthesis: photosystem I and photosystem II.

“In photosynthesis, the oxygen is produced at a special metal site containing four manganese and one calcium atom connected together as a metal cluster,” explains professor James Allen. “This cluster is bound to the protein called photosystem II that provides a carefully controlled environment for the cluster.”

On illumination, two water molecules bound at the cluster are split into molecular oxygen and four protons. Since water molecules are very stable, this process requires that the metal cluster be capable of efficiently performing very energetic reactions.

Allen, Williams and coworkers are trying to understand how a primitive anoxygenic organism that was capable of performing only simple low energy reactions could have evolved into oxygen-producing photosynthesis.

They have been manipulating the reaction center of the purple bacterium Rhodobacter sphaeroides encouraging it to acquire the functions of photosystem II. In the recent publication, they describe how a mononuclear manganese bound to the reaction center has gained some of the functional features of the metal cluster of photosystem II.

Although the mononuclear manganese cannot split water, it can react with reactive oxygen species to produce molecular oxygen. These results suggest that the evolution of photosynthesis might well have proceeded through intermediates that were capable of oxygen production and served until a protein with a bound manganese-calcium cluster evolved.

Jenny Green | Newswise Science News
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>